
Block-Based Approaches to Internet of Things in MIT
App Inventor

Wen Xi
MIT CSAIL

Massachusetts Institute of Technology
Cambridge, MA, USA

wenxi@mit.edu
Department of Computing

Hong Kong Polytechnic University
Kowloon, Hong Kong, China
wen.cy.wen@connect.polyu.hk

Evan W. Patton
MIT CSAIL

Massachusetts Institute of Technology
Cambridge, MA, USA
ewpatton@mit.edu

Abstract
Internet of Things (IoT) integrates physical devices and cre-
ates opportunities for people to interact with the surrounding
environment. While a number of blocks-based approaches
exist for programming some hardware, such as Snap! for
Arduino, Microblocks, and Scratch extensions, this is still an
underexplored area. In this paper, we propose a block-based
programming approach using MIT App Inventor to enable
novices be able to build mobile apps integrated with IoT
technology. We also review other block languages applied
for IoT. We conclude with some thoughts on how blocks
languages might inspire people to create with IoT.

Keywords Internet of Things, computational action, block-
based programming, MIT App Inventor

1 Introduction
MIT App Inventor is an intuitive, block-based programming
environment that allows beginner programmers to build
functional apps for smart phones and tablets. MIT App In-
ventor team has provided IoT extensions [2] to allow people
to design and create apps to interact with physical devices.
The IoT extensions are built on Bluetooth Low Energy (BLE)
to exchange data like receiving temperature, humidity, heart
rate from sensors, and sending out signals to control robots.

2 Use Cases
This Healthy Plant Monitoring App [1] is a use case for
MIT App Inventor IoT that monitors plants’ humidity, tem-
perature, light and moisture, by using the IoT extension’s
provided blocks. After setting up Arduino 101 (a microcon-
troller) to work with App Inventor, users should design their
app interface by dragging components to the designer screen.
Some sample blocks are here for finding and connecting BLE
devices by call-back functions, and requesting sensor data
such as humidity (Figure 1). After that, user could export

BLOCKS+, November 04, 2018, Boston, MA, USA
2018.

Figure 1. Blocks used to establish a BLE connection with an
Arduino and request sensor updates

the .apk file and install it on their phone to track the overall
health of the plant.
The Indoor Positioning App is another use case on MIT

App Inventor that collects Received Signal Strength Indica-
tion (RSSI) and calculate the phone’s indoor position by using
IoT BLE extension together with programmer self-defined
blocks. Programmers created a positioning extension with
customized blocks to input beacon information (Figure 2),
collect RSSI from BLE extension blocks and use their own
algorithm to calculate the positioning (Figure 3).

3 Implementation
The MIT App Inventor Arduino 101 extension wraps func-
tionality, including requesting sensor data and writing val-
ues to the device, to make it easy to understand and modify
apps. The blocks for Indoor Positioning are also relatively
high-level and abstract. For example, the DoPositioning
block filters RSSI, converts RSSI to distance, and calculates
distance from three beacons. This way, the user could just

1



BLOCKS+, November 04, 2018, Boston, MA, USA Wen Xi and Evan W. Patton

Figure 2. Blocks for beacons configuration

Figure 3. Blocks for receiving RSSI, calculate and update x,y
location

drag and use the blocks DoPositioning without needing to
understand the complex mathematics behind it.

4 Literature Review
Beside MIT App Inventor, there are other block-based pro-
gramming environments supporting Arduino (e.g., Scratch,
Snap4Arduino, Microblocks, BlocklyDuino) with different
block design. The blocks in the Scratch Arduino 101 exten-
sion provides the very elementary functions of setting the
pin mode, reading and writing pin value, and events on pin
value comparison. Blocklyduino as well as Snao4Arduino
program the device and aim to abstract connected hardware
into different categories so that users don’t necessarily need
to recall the matching between pins and devices, visualizing
the code to be more directly perceived. Microblocks allows
for developing a program using a virtual machine running
on the Arduino.

Blocks languages target a breadth of platforms. MIT App
Inventor particularly targets mobile apps interacting with
IoT. Scratch supports Arduino and micro:bit by extensions,
but targets programs running onweb browser. Snap4Arduino
as a visual programming language version modified from the
Snap!, supports different Arduino boards as well while like
Snap!, users in Snap4Arduino could only see the programs
running on web browsers. BlocklyDuino is a web-based vi-
sual programming Arduino editor, generates the source code
in textual format and needs the user manually copying it to
Arduino to get the result [3]. Microblocks targets a virtual
machine running on the target device. These many options
provide users flexibility in their choice of blocks language
for IoT.

5 Discussion
Dragging and combining blocks is a low barrier to entry to
allow people to enjoy the experience of learning and playing
with IoT. Blocks allow one to code without paying excessive
attention on coding syntax. Including pictures or text to
represent different devices could make the code more closely
represents the objects, reducing cognitive load, which is
especially beneficial for beginners and children. Ultimately,
we expect blocks-based languages to make IoT approachable
to general population.

MIT App Inventor is a relatively mature platform in terms
of creating Android apps and supports lots of functionality
by extensions. Users can implement creative ideas with IoT
and easily carry to use and show to friends on smart phones.
Furthermore, by allowing customized blocks, it’s efficient for
experienced programmers by accelerating IoT application
prototyping.

6 Conclusions
There are several block-based programming environments
which build apps for different environment and have per-
spective features. As one of them, and intuitive, visual pro-
gramming platform, MIT App Inventor has a distinguishing
feature focusing on mobile apps and expanding more func-
tions related to IoT to enlarge its usability, while still keeps
its simplicity for novice programmers and even children.
By deploying code to mobile devices, MIT App Inventor
makes access to IoT portable for anyone to carry and show
to friends.

References
[1] MIT App Inventor. 2017. App Inventor + IoT: Building a Healthy Plant

Monitoring App. http://iot.appinventor.mit.edu/assets/tutorials/MIT_
App_Inventor_IoT_Healthy_Plant.pdf. Accessed on 2018-08-18.

[2] MIT App Inventor. 2017. Internet of Things. http://iot.appinventor.mit.
edu/#/. Accessed on 2018-08-18.

[3] J. Judvaitis, A. Elsts, and L. Selavo. 2013. Demo Abstract: SEAL-Blockly:
Sensor Network Visual Programming Using a Web Browser. In 10th
European Conference of Wireless Sensor Networks.

2

http://iot.appinventor.mit.edu/assets/tutorials/MIT_App_Inventor_IoT_Healthy_Plant.pdf
http://iot.appinventor.mit.edu/assets/tutorials/MIT_App_Inventor_IoT_Healthy_Plant.pdf
http://iot.appinventor.mit.edu/#/
http://iot.appinventor.mit.edu/#/

	Abstract
	1 Introduction
	2 Use Cases
	3 Implementation
	4 Literature Review
	5 Discussion
	6 Conclusions
	References

