
CTE-STEM 2024

Advancing Mobile App Development and Generative AI Education through MIT App

Inventor

David Y.J. Kim1, Anqi Zhou1, Yasuhiro Sudo2, Kosuke Takano2

1Massachusetts Institute of Technology
2Kanagawa Institute of Technology

ABSTRACT

This study evaluates MIT App Inventor's efficacy in

teaching Computational Thinking and Generative AI to a

diverse international student cohort. Centered on a five-

day workshop, we focus on teaching students to create

mobile applications that harness the power of Generative

AI. The use of App Inventor, known for its block-based

coding, made programming more accessible and engaging,

particularly for novices. Participants' feedback indicated a

significant shift in their perception of programming. They

reported increased confidence and motivation to integrate

these skills into daily life. The student-developed

applications during the workshop demonstrated practical

applications of their learning, aligning with the concept of

Computational Action – the application of computational

thinking in real-world scenarios. The research highlights

App Inventor's strengths as an educational tool and

suggests enhancements for its interface and features. It

sheds light on the tool's role in encouraging technological

proficiency and creativity among global student

populations.

KEYWORDS

Computational Thinking, Generative AI, MIT App

Inventor, Computational Action

1. INTRODUCTION & BACKGROUND
 Technology exerts a profound transformative impact on

society, altering our lives on an unparalleled scale. Rather

than merely being passive consumers, we envisage a future

where individuals actively contribute to technological

progress. However, the path to this vision of

democratizing technology is frequently hindered by its

intricate nature. Numerous efforts from researchers,

practitioners, and educators have been made to address this

challenge through various approaches. Among these is the

implementation of block-based programming, exemplified

by platforms like Scratch (Maloney et al., 2010). Another

example is MIT App Inventor (Wolber, Abelson, and

Friedman, 2015), which enables anyone to craft unique

applications for smartphones and tablets. Users of App

Inventor develop apps by arranging and connecting

geometric, tinker-toy-like blocks through a drag-and-drop

interface on their browser screen. The platform then

translates these block assemblies into executable apps

compatible with Android or iOS devices.

MIT App Inventor has demonstrated its effectiveness in

sparking interest among numerous students in creating

mobile applications (Perdikuri, 2014), even for young

middle school students (Grover and Pea, 2013). However,

most of these curricula have been evaluated primarily with

students in the United States, leaving it uncertain whether

they hold the same effectiveness for students abroad.

This paper explores this question through an intensive one-

week workshop designed for Japanese university students,

many of whom had no prior experience in coding or even

using tools like App Inventor. The selection of participants

was notably diverse, encompassing students from various

academic backgrounds, thus presenting a unique

opportunity to evaluate the efficacy of block-based coding

as a universal tool outside of the States for imparting

computational thinking education. This paper details the

structure of the workshop, the pedagogical strategies

employed, and the outcomes observed, shedding light on

the transformative potential of block-based coding in

education abroad.

1.1. Computational Thinking Education
 Computational Thinking (CT), popularized by Jeannette

Wing in her seminal 2006 paper (Wing, 2006), represents

a fundamental paradigm in modern education, emerging as

a critical skill set akin to reading, writing, and arithmetic.

At its core, Computational Thinking involves problem-

solving methods and techniques that draw from the

domain of computer science, yet its application transcends

far beyond the confines of programming. The implications

of CT education are profound. By fostering computational

thinking skills, educators are preparing students for a
future where digital literacy is paramount. Moreover, CT

education promotes problem-solving skills, logical

reasoning, and creativity, which are valuable in various

fields (Kong and Abelson, 2022).

1.2. Computational Action
Computational action represents the practical

implementation of computational thinking concepts.

Computational action is characterized by its application in

real-world scenarios, iterative process of refinement,

emphasis on collaboration and communication, outcome-

oriented nature, and direct engagement with technology

(Tissenbaum, Sheldon, and Abelson, 2019). It goes

beyond theoretical understanding, involving the creation of

tangible solutions like software applications, algorithms,

or systems. This transition is critical, particularly in

educational contexts, as it enables learners to apply

abstract principles to real-world tasks, thereby solidifying

their understanding and enhancing their problem-solving

skills. This practical approach is essential in the

educational process, helping students not only reinforce

their computational thinking but also gain confidence and

skills in technological innovation and creation (Du et al.,

2023).

1.3. MIT App Inventor
The App Inventor's design philosophy is centered around

democratizing software development by enabling users of

varying programming expertise to create mobile

CTE-STEM 2024

applications. It utilizes a block-based programming

language (Patton, Tissenbaum, Harunani, 2019).

The block-based language allows users to "snap" together

command blocks to create a program, eliminating the need

for syntax and reducing common coding errors. In the App

Inventor environment, the app creation process is divided

into two main parts: the Designer and the Blocks Editor.

Figure 1. Designer section of App Inventor

Designer (Figure 1): The Designer is used to build the

layout of the application. Users can drag and drop

components, such as buttons, images, or sliders, onto a

visual representation of a phone screen. This way, users

can build the app's user interface without writing a single

line of code.

Figure 2. Blocks Editor in App Inventor

Blocks Editor (Figure 2): The Blocks Editor is where the

app's behavior is defined. Users can select from a pallet of

blocks that represent different functions or variables, and

drag them into the workspace. By connecting different

blocks, users define the app's responses to user inputs or

other events.

1.4. Educating Students about Generative AI
Generative AI refers to artificial intelligence systems that

can generate new content, ideas, or data that are novel and

not merely a reshuffling of existing information. This field

has seen a significant surge in both interest and

development in recent years, primarily due to advances in

machine learning and neural network technologies

(OpenAI, 2016). Generative AI holds the capacity to

profoundly transform numerous facets of human society,

bringing with it a spectrum of both positive and negative

impacts. It is crucial for an increasing number of people to

not only become aware of this transformative technology

but also to possess the skills and understanding necessary

to integrate it into their daily lives effectively. The

importance of educating about these technologies becomes

increasingly critical. Education in generative AI not only

involves understanding the technical workings of these

systems but also encompasses a broader comprehension of

their ethical, societal, and practical implications (Sharples,

2023). Recently, the MIT App Inventor acquired an

innovative addition to its platform - a chatbot/imagebot

component. This new feature abstracted the integration of

advanced generative AI models, like OpenAI's ChatGPT

and Dall-E (Shi et al. 2020), into mobile applications built

with App Inventor. With just a few programming blocks,

developers can now tap into the power of these AI models,

opening up a wide range of possibilities for app

functionality.

An assessment of the workshop's effectiveness was

primarily based on the feedback provided by the students

and the evaluation of the projects presented on the final

day. These projects served as a practical indicator of the

students' grasp of the concepts and skills imparted during

the workshop.

2. METHOD

 Figure 3. Experience in coding and in App Inventor

 The workshop titled “Harnessing Generative AI in Mobile

Application Development” was conducted at the

CTE-STEM 2024

Kanagawa Institute of Technology. It spanned five days,

with each session lasting three hours. The participant

group comprised 23 in-person students at the Kanagawa

Institute of Technology and 60 to 100 remote students,

primarily students from Malaysia and Indonesia.

The workshop's primary objective was to introduce

students, many of whom had minimal to no experience in

coding, as you can see in Figure 3, to the basics of mobile

application development using App Inventor. A special

emphasis was placed on the integration of generative AI

components, showcasing the potential of block-based

coding in teaching computational thinking and practical

application skills.

Figure 4. Curriculum of the workshop

As shown in Figure 4, the first three days of the workshop

were dedicated to hands-on tutorials in App Inventor,

focusing particularly on utilizing its new chatbot and

imagebot components. These sessions were designed to

provide step-by-step guidance, enabling students to

become familiar with block-based coding and the

essentials of mobile app creation.

On the fourth day, the workshop shifted its focus to the

foundational concepts of generative AI. This segment

included both theoretical and practical elements, aiming to

enhance students' understanding of how generative AI

operates and how it can be incorporated into mobile

applications. This was particularly relevant given the use

of AI components in the App Inventor activities.

 The workshop culminated on the fifth day with student

presentations. Each participant or group was tasked with

presenting a simple mobile application they had developed

using App Inventor, which incorporated elements of

generative AI. This session provided an opportunity for

students to demonstrate their understanding and creative

application of the skills acquired during the workshop.

An assessment of the workshop's effectiveness was

primarily based on the feedback provided by the students

and the evaluation of the projects presented on the final

day. These projects served as a practical indicator of the

student's grasp of the concepts and skills imparted during

the workshop. The IRB approval was obtained from

Kanagawa Institute of Technology, ensuring that all

research methods, participant recruitment, and data

handling procedures complied with ethical standards and

regulatory guidelines.

3. RESULTS
The students' final presentations were particularly

impressive, considering that most of them had never heard

of MIT App Inventor before the workshop and for many,

English was not their primary language. Despite these

challenges, they showcased remarkable ingenuity in

integrating generative AI with mobile application

development into their everyday lives. For instance,

highlighted in Figure 5, a standout project was an app

developed by a student using a chatbot to determine a

random ‘lucky color’. This color then inspired the

generation of images of items in that hue, along with

information on where to find these items. The student

noted, “This app helps me choose the color of my shirt

each day,” brilliantly demonstrating the practical use of

chatbot and imagebot functionalities. This example

underscores the students' capacity to creatively utilize AI

tools, significantly enhancing their daily routines and

decision-making processes, all achieved within the context

of navigating a new programming language and working

in a non-native language.

Figure 5. Example of an app a student created

We also show both qualitative and quantitative results

based on the student survey after the workshop ended.

CTE-STEM 2024

3.1. Did students become more confident in

programming?
The five-day workshop utilizing MIT App Inventor for

mobile application development significantly influenced

the participants' views on programming. Attendees who

already had an interest in programming noted less change

in their perspective. In contrast, for many others, the

workshop was an eye-opening experience, revealing its

simplicity and accessibility.

The workshop boosted the participants' confidence in

programming. Individuals who previously found

programming challenging or had struggled with mobile

app development reported that the workshop rendered

these tasks more manageable and enjoyable. Someone

mentioned that “Before diving into programming, I was

overwhelmed and doubted my ability to master it.

However, once I began to learn, my confidence grew,

sparking a genuine interest in application development.”

 Figure 6.

Additionally, A considerable number of participants

discovered a new enthusiasm for programming, largely

attributed to the user-friendly and less intimidating nature

of the block-based approach, as opposed to traditional line

coding. As one student noted “I had the impression that

programming would be difficult, but this lecture made me

realize the freedom and ease of programming. Thanks to

this, I became interested in programming.” Our workshop

effectively made software development more tangible and

engaging, particularly for beginners, by demystifying the

process.

The practicality of the workshop was another key aspect

highlighted by attendees. One student mentioned “This

workshop introduced us to block programming which is

straightforward, requiring no prior coding experience.”

Others mention that it helped clarify fundamental

programming concepts such as event handling, data

storage, and the overall logic of programming languages.

The workshop proved to be revelatory for those initially

skeptical or unfamiliar with block-based programming,

demonstrating how this kind of programming can

streamline and elevate the development process.

Furthermore, the workshop showcased the exciting

possibilities of integrating AI into app development. It not

only sparked an interest in programming and AI among

participants but also shed light on alternative approaches

to programming, such as visual programming and the use

of pre-built components, highlighting the diverse

applications and versatility of AI.

3.2. Was App Inventor an effective tool to learn?

Participants unanimously lauded MIT App Inventor for its

user-centric, accessible interface, highlighting its particular

appeal to novices and those with minimal coding

background. Its simplicity, a stark contrast to traditional

coding approaches, stood out as a significant benefit. The

platform's block-based, drag-and-drop interface was

celebrated for demystifying the app development process,

as encapsulated by one participant's remark, “It is easy to

tinker around with blocks, making programming far less

daunting than traditional line coding.”

Figure 7.

The ease with which users could navigate and utilize App

Inventor was a recurring theme among feedback. Its direct,

no-frills functionality facilitated a seamless and swift app

creation experience, devoid of the complexities often

associated with coding. The platform’s design, inherently

accommodating to those without a coding pedigree,

enables the swift and straightforward development of

mobile applications. This accessibility is pivotal,

positioning App Inventor as an invaluable resource across

a broad spectrum of users, particularly those venturing into

programming for the first time. Moreover, the platform’s

intuitive structure allows users to quickly comprehend

both the logic behind app development and its design

aspects. This feature was especially attractive to

participants who, despite finding traditional coding

barriers, were keen on venturing into mobile app

development.

Also, some praised the geometric tinkering process of App

Inventor. One student noted “the workshop ignited my

interest in programming, particularly because I tend to

avoid tasks that require extensive memorization, like

learning a programming language. The transformation of

programming into a puzzle-like format simplified the

learning process for me, allowing me to grasp the

underlying concepts of the project more intuitively.”. The

visual nature of App Inventor, where coding is akin to

CTE-STEM 2024

solving puzzles, was highlighted as a feature that enhances

learning and retention, especially for those who struggle

with writing code from memory. The platform was also

lauded for its ability to facilitate understanding of

technological developments and for making programming

a more approachable and enjoyable experience.

Furthermore, the platform was recognized for its

efficiency in frontend development and its broad

functionality, supporting various features needed for

smartphone application creation as one mentioned “The

breadth of functionality that allows for the implementation

of a complete set of functions needed to create a

smartphone application, as well as support for external

hardware such as pose estimation, ChatBot, cloud, Lego,

etc.” The convenience of real-time programming checks

and the reduced need for high-end equipment were also

mentioned.

3.3. What can App Inventor improve?

The feedback from participants on MIT App Inventor was

varied, focusing on enhancements in user interface (UI)

design, additional features, and educational resources.

UI/UX Design Improvements: Several respondents

suggested more flexibility and customization options in the

UI design of the platform. This included a desire for more

UI components and the ability to edit code directly for

customizing UI and logic. Improvements in UI/UX design

were a recurring theme, with suggestions like a more user-

friendly interface and the introduction of features like dark

mode.

Enhanced Features: Participants expressed interest in

seeing more advanced features in App Inventor. Specific

suggestions included improved functionality for the

chatbot and imagebot components, image recognition AI,

and an in-built emulator for quick app testing. Some users

also requested more variety in components for editing user

interfaces and a desire for the platform to support

hardcoding.

Educational Resources: Requests for more

comprehensive educational resources were common. This

included more advanced tutorials, both in video and PDF

formats, complete documentation about the blocks, and

additional tutorials on diverse topics, including game

development. The idea of making tutorials more accessible

and inclusive for various learning environments was also

highlighted.

Accessibility and Language Support: Enhancements in

accessibility features, such as Japanese language support

and a clearer display of warnings and commands, were

mentioned. Suggestions for an offline mode and

improvements in the website's UI/UX were also proposed.

Performance and Bug Fixes: Addressing performance

issues and fixing bugs were noted as areas for

improvement. This includes dealing with issues where

blocks do not display or the display freezes.

Community and Collaboration Features: Some

participants suggested features to facilitate sharing and

collaboration directly within the app, such as enabling

multiple users to work on an app simultaneously and

hosting activities to promote App Inventor's growth

globally.

Transparency in Coding: A few responses indicated an

interest in seeing the block-based code translated into

standard programming language notation, which could

help those interested in transitioning to traditional coding.

4. DISCUSSION
In this study, we evaluated the efficacy of MIT App

Inventor as an educational tool for imparting

Computational Thinking and Generative AI skills to

students globally, extending beyond the confines of the

United States. The workshop, encompassing a blend of

theoretical learning and hands-on practice over five days,

effectively guided students through the core principles and

practical applications of programming. The strategic use of

App Inventor was instrumental in this process, enabling

students to engage with coding constructs visually. This

approach not only facilitated a deeper understanding of

programming concepts but also made the learning journey

more accessible and less daunting for beginners.

Our analysis reveals that students overwhelmingly favored

the block-based programming approach offered by App

Inventor, appreciating its intuitiveness and ease of access.

The feedback underscored a significant enhancement in

their confidence in programming, coupled with a

newfound inspiration to integrate these skills into their
daily lives. Importantly, the various applications

developed by the students during the workshop are a

testament to their creative engagement with the tool. These

applications reflect not just a grasp of programming

concepts but also a broader vision of using technology as a

means of personal and community development.

This aligns closely with the essence of Computational

Action, where the application of learned skills in real-

world scenarios is as crucial as the learning itself. The

successful implementation of App Inventor in this context

showcases its potential as a powerful catalyst in the realm

of educational technology, particularly in fostering a

deeper, more practical understanding of Computational

Thinking and Generative AI across diverse student

populations. The study thereby contributes valuable

insights into the scalability and adaptability of such

educational tools in a global educational landscape,

highlighting their role in shaping a technologically adept

and innovative future generation.

5. REFERENCES
John Maloney, Mitchel Resnick, Natalie Rusk, Brian

Silverman, and Evelyn Eastmond. 2010. The Scratch

Programming Language and Environment. ACM Trans.

Comput. Educ. 10, 4, Article 16 (November 2010), 15

pages. https://doi.org/10.1145/1868358.1868363

David Wolber, Harold Abelson, and Mark Friedman.

2015. Democratizing Computing with App Inventor.

GetMobile: Mobile Comp. and Comm. 18, 4 (October

2014), 53–58. https://doi.org/10.1145/2721914.2721935

Katerina Perdikuri. 201). Students' Experiences from the

use of MIT App Inventor in classroom. In Proceedings of

https://doi.org/10.1145/2721914.2721935

CTE-STEM 2024

the 18th Panhellenic Conference on Informatics (PCI '14).

Association for Computing Machinery, New York, NY,

USA, 1–6. https://doi.org/10.1145/2645791.2645835

Shuchi Grover and Roy Pea. 2013. Using a discourse-

intensive pedagogy and android's app inventor for

introducing computational concepts to middle school

students. In Proceeding of the 44th ACM technical

symposium on Computer science education (SIGCSE '13).

Association for Computing Machinery, New York, NY,

USA, 723–728. https://doi.org/10.1145/2445196.2445404

Jeannette M. Wing. 2006. Computational thinking.

Commun. ACM 49, 3 (March 2006), 33–35.

https://doi.org/10.1145/1118178.1118215

Siu-Cheung Kong, Harold Abelson. (2022).

Computational Thinking Education in K–12: Artificial

Intelligence Literacy and Physical Computing. The MIT

Press

Mike Tissenbaum, Josh Sheldon, and Hal Abelson. 2019.

From computational thinking to computational action.

Commun. ACM 62, 3 (March 2019), 34–36.

https://doi.org/10.1145/3265747

Xiaoxue Du, Robert Parks, Selim Tezel, Jeff Freilich, H.

Nicole Pang, Hal Abelson, and Cynthia Breazeal. 2023.

Designing a Computational Action Program to Tackle

Global Challenges. In Proceedings of the 54th ACM

Technical Symposium on Computer Science Education V.

2 (SIGCSE 2023). Association for Computing Machinery,

New York, NY, USA, 1320.

https://doi.org/10.1145/3545947.3576267

Patton, E.W., Tissenbaum, M., Harunani, F. (2019). MIT

App Inventor: Objectives, Design, and Development. In:

Kong, SC., Abelson, H. (eds) Computational Thinking

Education. Springer, Singapore.

https://doi.org/10.1007/978-981-13-6528-7_3

OpenAI. (2016) Generative Models. Generative models

(openai.com)

Sharples, M. (2023). Towards social generative AI for

education: theory, practices and ethics. Learning: Research

and Practice, 9, 159 - 167.

Shi, Z., Zhou, X., Qiu, X., & Zhu, X. (2020). Improving

image captioning with better use of captions. arXiv

preprint arXiv:2006.11807

https://doi.org/10.1145/2645791.2645835
https://doi.org/10.1145/2445196.2445404
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/3265747
https://doi.org/10.1145/3545947.3576267
https://doi.org/10.1007/978-981-13-6528-7_3
https://openai.com/research/generative-models
https://openai.com/research/generative-models

	Computational Thinking, Generative AI, MIT App Inventor, Computational Action
	1. INTRODUCTION & BACKGROUND
	1.1. Computational Thinking Education
	1.2. Computational Action
	1.3. MIT App Inventor
	1.4. Educating Students about Generative AI
	An assessment of the workshop's effectiveness was primarily based on the feedback provided by the students and the evaluation of the projects presented on the final day. These projects served as a practical indicator of the students' grasp of the conc...
	2. METHOD
	The workshop's primary objective was to introduce students, many of whom had minimal to no experience in coding, as you can see in Figure 3, to the basics of mobile application development using App Inventor. A special emphasis was placed on the integ...
	An assessment of the workshop's effectiveness was primarily based on the feedback provided by the students and the evaluation of the projects presented on the final day. These projects served as a practical indicator of the student's grasp of the conc...
	3. RESULTS
	3.1. Did students become more confident in programming?
	4. DISCUSSION
	5. REFERENCES

