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ABSTRACT 
Machine learning (ML) courses have traditionally been 

taught through a math-first approach. They generally begin 

by establishing mathematical theories behind ML, such as 

the perceptron algorithm, logistic regression, and 

backpropagation, and then use these building blocks to 

motivate more complex structures such as neural networks. 

Such educational resources may not be sufficient or 

preferable for audiences who wish to use ML to build 

useful artifacts but do not have a strong mathematical or 

programming background. In this paper, we introduce a 

new framework for teaching actionable ML that combines 

three components in a Use-Modify-Create progression: (1) 

technical modules taught through hands-on labs, (2) a 

capstone project, and (3) supplemental lectures for new 

areas of research. This framework was applied in two 

iterations of a semester-long practicum at Massachusetts 

Institute of Technology (MIT) as a beginner-accessible 

course aimed at helping a broad range of students gain the 

ability to ideate and implement independent ML projects. 

We present the curriculum, student projects, pre and post-

course survey responses, assignment grades, reflective 

discussions, and learnings from both iterations of the 

course. Our results indicate that the proposed actionable 

pedagogical framework for ML along with the content and 

practices of the course were effective for increasing 

students’ practical self-efficacy in ML and computational 

identity as developers of ML applications. The findings of 

this study illuminate patterns of interaction with ML 

systems that support a practical approach to teaching ML in 

order to increase knowledge acquisition, future learning 

ability, and motivation in beginner students. 

KEYWORDS 
machine learning, deep learning, actionable pedagogical 

framework, experiential learning, small practicum 

1. INTRODUCTION 
As artificial intelligence (AI) and machine learning (ML) 

have gained prevalence in public education over the past 

decade, many interpretations of the two terms have been 

presented. We define ML as models trained on large 

amounts of data to inductively find patterns while AI also 

includes algorithms crafted from general deductive 

principles to solve specific problems (e.g. alpha-beta 

pruning and minimax); and deep learning as a subtopic of 

ML that uses neural networks with more than one hidden 

layer (Lao, Lee, & Abelson, 2019). In order for an ML 

system to “work”, it is dependent on the availability of high 

quality data, scientific insights on features, appropriate 

model architectures, and computational processing power. 

Instead of being generally deterministic programs, ML 

results in powerful statistical algorithms that can be hard to 

debug and understand on a detailed level, such as when 

analyzing a single error in a large neural network (Shapiro, 

Fiebrink, & Norvig, 2018). Therefore, it may not be the 

most effective to teach ML in the style of other algorithms 

courses if we want to educate critical thinkers from a wide 

variety of backgrounds. In designing our teaching 

framework, our questions were: 

• Can students with no/minimal ML or CS experience 

quickly apply ML to interesting and suitable problems 

without being explicitly taught the underlying 

mathematical theories? 

• What human and computational resources are needed 

for an introductory, projects-based ML course? 

This paper serves as an experience report that describes the 

pedagogical learnings from designing and implementing a 

small-scale, project-focused practicum that was successful 

at helping students of various technical backgrounds 

develop self-efficacy as machine learning project creators 

(Lao, Lee, & Abelson, 2019). 

2. BACKGROUND 

2.1. Theoretical vs. Practical Approaches 

Most current ML courses teach the mathematics of ML 

during lessons (e.g. the perceptron algorithm or linear 

regression), and ask students to work on proofs or math-

heavy problems for homework, which may involve 

translating the relevant math into code (Dror & Ng, 2018; 

see also Mohri, 2018). However, such methodologies may 

not work well for students who do not yet have a strong 

foundation in probability, calculus, or linear algebra. In 

contrast, practicums are often run as laboratory classes 

where students work on assignments and projects during 

class time with the support of mentors and/or teaching 

assistants. This Deep Learning Practicum course is an 

example of an ML practicum targeted towards university 

students of a broad range of backgrounds that takes a 

practical approach—its focus is on the “doing and use of 

ML” and the creation of personal projects and applications. 

2.2. Experiential Learning: Use-Modify-Create 

In experiential learning, or “learning through reflection and 

doing” (Kolb, 2014), learning can be elicited through direct 

manipulation of objects or systems as “objects to think 

with” (Papert, 1980). In our course design, experiential 

learning exercises are combined with a capstone project 

through the Use-Modify-Create Progression (Lee et al., 

2011). We posit that Use-Modify-Create can help students 

deepen understanding of ML concepts and master practical 

skills: (1) students use ready-made ML models within fast-
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response and user-friendly interfaces to develop high-level 

intuitions about training, testing, and the importance of data, 

(2) students manipulate the models directly to understand 

how architectural modules, hyperparameters, and datasets 

impact results for different problems, (3) students scope a 

problem suitable for ML and create their own application. 

This methodology can now be applied to ML due to the 

creation of libraries that support in-browser ML 

experiments such as TensorFlow.js (Smilkov et al., 2019), 

and user-friendly applications such as Teachable Machine 

(Stoj.io et al, 2018) and ModelBuilder (Google, 2018). 

These tools allow students to modify powerful ML models 

(either through a user interface or code) and test the results 

in real-time, which enable novices to quickly gain 

experience through direct manipulation of ML systems. 

Students can quickly iterate through building a model, 

inputting data, training the model, and analyzing results. 

Furthermore, these “laboratory” experiences with ML 

systems provide students with experiences that directly 

relate to the future of work at the human-machine frontier. 

2.3. Self-Efficacy and Engagement 

This practicum's framework for teaching actionable ML 

incorporates several mechanisms for engagement: 

empowering students, creating meaningful experiences 

through scaffolded, inquiry-based learning, and authentic 

learning opportunities (Wu & Huang, 2007). The 

framework also emphasizes self-efficacy, a belief in one's 

chances of successfully accomplishing a task and 

producing a favorable outcome (Bandura, 1977). Students 

with high self-efficacy develop deeper interests in the tasks 

at hand and are more motivated to learn challenging 

material (Bandura et al., 2001). Recent work shows that 

self-efficacy is developed and strengthened through seeing 

others like themselves succeed, being persuaded by 

respected friends and advisors, and reflecting on one's own 

capabilities (Bandura, 2004). As such, our framework was 

designed to emphasize collaborative work, work with near-

peer mentors, and exposure to ML professionals of diverse 

demographics (gender, age, and race/ethnicity). 

3. INSTRUMENTS AND ASSESSMENT 
The data sources used to analyze the course’s impact 

included anonymous responses to pre and post surveys and 

analysis of capstone projects. At the time of the study, there 

were no validated instruments for measuring self-efficacy 

in ML. We created our post survey instrument based on 

validated instruments for measuring self-efficacy in general 

sciences, including Children's Science Curiosity Scale 

(Harty & Beall, 1984) and Modified Attitudes Towards 

Science Inventory (Weinburgh & Steele, 2000). 

4. DEEP LEARNING PRACTICUM V1 
The first version of the course ran for 1.5 hours 2x a week 

over a 15-week semester in spring 2018 at Massachusetts 

Institute of Technology (MIT). The course did not count 

towards core undergraduate requirements and was an 

elective course. In pre-registration, the instructors 

emphasized that the course was meant for students who did 

not feel comfortable working with ML and not experts 

hoping to gain advanced techniques. Class size was 

restricted due to the personalized, project-based nature of 

instruction. Twelve students completed the course. 

During the course, instructors aimed to ground theoretical 

constructs of ML in hands-on applications that spanned 

different topics. Six genres were covered in the pilot that 

included predictive and generative applications of ML. The 

order of genres followed the historical development of ML, 

and naturally presented a progression in the sophistication 

of ML models. There were 3 starter topics followed by 3 

advanced topics. The instructors gave short explanatory 

technical lectures (<15 min.) with in-class exercises in 

TensorFlow.js that students ran on their own laptops. The 

activities often leveraged existing datasets, pre-built 

models, and web-based tools for ML. For each set of 

exercises, students were asked to discuss their findings 

with a partner or with the class. Student teaching staff 

provided technical and instructional support. Weekly take-

home assignments provided an extension to the 

environment and the exercises introduced during class.  

The last 9 weeks of class focused on capstone projects and 

guest lectures (GLs) from ML professionals and 

researchers. Students chose a problem that personally 

interested them and was suitable for an ML application. 

Mentors were paired to each project. A week-by-week map 

of the version 1 curriculum is presented in Table 1. 

Table 1. V1 of the curriculum annotated with the 

ITEST Use-Modify-Create progression per week. 

wk. Topics Progression 

1 
K-Nearest 

Neighbors 

Use: Teachable Machine 

webapp (Stoj.io et al, 2018). 

Modify: Confidence 

algorithms in source code. 

2 
Multilayer 

Networks 

Use: Model Builder webapp 

(Google, 2018). Modify: 

Starter TensorFlow.js and 

HTML code for programming 

multilayer networks. 

3 

Convolutional 

Neural 

Networks 

(CNNs) 

Use: Model Builder webapp, 

filter visualization webapp 

(Harley, 2015), Fast Style 

Transfer webapp (Nakano, 

2018). Modify: Starter code 

for programming CNNs. 

4 

Generative 

Models and 

Embeddings 

Use: Embedding Projector 

webapp (TensorFlow, 2018), 

Latent Space Explorer 

(deeplearn.js., 2018). Modify: 

Feature projection functions 

in Latent Space Explorer 

source code. 

5 

Generative 

Adversarial 

Networks 

(GANs) 

Use: GAN Playground 

webapp (Nakano, 2017). 

Modify: Starter 

TensorFlow.js and HTML 

code for programming GANs. 

6 

Recurrent 

Neural 

Networks 

(RNNs) and 

Use: RNN text generation 

webapp (Karpathy, 2015), 

SketchRNN webapp (Ha, 

Jongejan, & Johnson, 2019). 
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Long Short-

Term Memory 

(LSTMs) 

Modify: Architecture and 

parameters in webapp source 

code. Create: Music 

generation RNN application 

through TensorFlow Python 

notebook. 

7 
Project 

Overview 

Create: Students scoped and 

presented 3 project ideas. 

8 Spring Break 

Create: Teams/individuals 

worked on the project 

proposal writeup. 

9 

Project Mentor 

Matching, GL: 

Healthcare 

Create: Teams submitted 

proposals and were matched 

with industry mentors. 

10 

GL: Fairness, 

GL: Testing 

and Training 

Tools 

Create: Teams work on 

projects. 

11 
GL: 

Interpretability 

Create: Teams work on 

projects. 

12 

Project 

Midpoint 

Checkpoint 

Presentations, 

GL: Art & 

Music 

Create: Teams presented 5-

minute project progress 

reports in class, received 

feedback. 

13 
GL: People + 

AI Research 
Create: Work on projects. 

14 

Final 

Presentation 

Dress 

Rehearsal, GL: 

Adversarial 

Examples 

Create: Teams presented a 

practice run of their final 10-

minute project presentations 

in class, received feedback. 

15 

Final 

Presentation 

Showcase, 

Project 

Writeup Due 

Create: Present projects in 

front of industry professionals 

and submit project writeups in 

the form of instructional blog 

posts. 

4.1. Student Demographics 

Of the 12 students, there were 2 (17%) second-years, 4 

(33%) third-years, 5 (42%) fourth-years, and 1 (8%) 

graduate student.  Nine (75%) majored in EE/CS, 1 in Math, 

1 in Math & Physics, and 1 in Humanities. There were 3 

black women, 3 Asian men, 2 Asian women, 2 white 

women, and 1 white man. Ten students (83%) had basic 

exposure to AI or ML, but wrote in the pre- survey that 

they wanted to take another introductory course because 

they did not feel that they could build practical applications. 

All students had at least some coding experience, but only 

8 (67%) had experience in JavaScript. 

4.2. Teaching Staff and Industry Mentors 

There were 6 student staffers who helped debug in-class 

exercises for each topic, answer questions, and lead 

reflective discussions that directed towards learning goals 

for the exercises. For the 9 projects in the class, 3 of the 

staff mentored 1 project each and 3 mentored 2 projects 

each. There were 9 industry mentors. We reached out to 

companies and researchers in the area to ask for volunteers 

who have experience with ML projects. We invited all 

volunteers to a mixer with the students after project teams 

had formed. At the beginning of the mixer, each mentor 

gave a brief overview of their expertise and each student 

team summarized their project goals. After the mixer, 

student teams submitted their preferences for mentors and 

were matched. Mentors met with teams during the 

beginning and middle of their project cycles to help with 

high level ideas, resources, and project scoping. 

4.3. Capstone Projects 

Within this “Create” stage of the course, students 

marshaled the tools and techniques at their disposal along 

with mentorship to create capstone projects. Students were 

instructed to choose a project that they were personally 

interested in, but were also cautioned that a realistic 

project implemented well and evaluated thoroughly is 

better than a half-implemented ambitious project with no 

result. Projects could be a real-world Application of ML, 

an Exploration of properties of neural networks, or a 

Replication of an ML paper. To scaffold project scoping, 

students were given a “3 Ideas” assignment in which they 

presented 3 project ideas in class. For each idea, students 

defined a “Safe” goal that they were confident they could 

achieve by the end of the semester, a “Target” goal that 

they hoped to achieve, and a “Stretch” goal that would be 

good to achieve if extra time was available.  

Students had the option of finding a project partner after 

the presentations. There were 9 projects consisting of 3 pair 

projects and 6 solo projects. 7 projects were in the 

Application category, 1 in Replication, and 1 in both 

Application and Exploration. All teams achieved their Safe 

goals. One team continued working on their project after 

the class ended and was able to publish a paper. 

4.4. Learnings for V2 

Feedback was obtained through surveys and a discussion-

style post-mortem on the last day of class. Due to the small 

class size, quantitative analyses are not presented to 

preserve anonymity. Overall, students loved the interactive 

lab style of the modules in the class. Two students with no 

prior JavaScript experience felt that the course was 

surprisingly JavaScript-independent, although some coding 

experience was helpful. Students felt that the small class 

size was beneficial in creating an environment that made 

them feel comfortable speaking during the open reflective 

discussions that accompanied in-class exercises. Nearly 

every student felt that there was not enough time for project 

implementation, but students also said that it was the most 

valuable and enjoyable part of the course. Students 

suggested that the course should cover data collection, data 

processing, and using external computational resources to 

better scaffold the projects. Students enjoyed the guest 

lectures and thought that they helped “put what we learned 

into a much bigger picture.” Students noted that some 

guest lectures may have been useful before starting their 

final projects and would have provided additional context 

for project choices. 

Several students said that the course demystified ML and 

made it more approachable. Two students mentioned their 

increased concern over bias in ML algorithms as well as a 
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deeper understanding of how to resolve some of these 

issues: “Before this course, I thought of computer 

programs more linearly – as if [programmers] were mostly 

in control of a program's results. Now I have a much 

greater understanding of how ML programs can be biased 

and unfair... I learned the importance of providing good, 

varied input data and how this data can have significant 

impact on a network and ultimately the world.” 

5. DEEP LEARNING PRACTICUM V2 

5.1. Changes from V1 

The second version of Deep Learning Practicum was 

offered at MIT in fall 2018, the semester following the 

pilot. There were 6 main changes from version 1: (1) the 

final project was introduced at the beginning of the 

semester and ran in parallel to the modules portion of the 

course, (2) there were two additional scaffolding 

workshops for the final project (data mining and using 

computing clusters), (3) students were required to have a 

partner for their project unless given permission, (4) guest 

lectures were more interspersed throughout the course 

instead of all at the end, (5) the staff-to-student ratio 

decreased from 6:12 to 6:26, and (6) an additional unit on 

reinforcement learning was added. The full set of version 2 

curricula, lectures, assignments, and final projects can be 

found online at http://mit.edu/6.s198 (Lao & Abelson, 
2018). A weekly summary of the version 2 curriculum is 

presented in Table 2 (Lao, Lee, & Abelson, 2019). 

Table 2. V2 of the curriculum annotated with the 

ITEST Use-Modify-Create progression per week. 

wk. Topics Progression 

1 

K-Nearest 

Neighbors, 

Transfer Learning 

Module from version 1 wk. 

1 with more emphasis on 

transfer learning techniques. 

2 

Multilayer 

Networks, Project 

Overview 

Module from v1 wk2. 

Create: Scope 3 ideas for 

capstone final project. 

3 

CNNs, GL: 

Adversarial 

Attacks 

Module from v1 wk3. 

Modify: Starter adversarial 

attack TensorFlow code on 

CNNs. 

4 

3 Ideas Project 

Workshop, Data 

Mining Workshop 

Use: Kaggle to find datasets 

(Kaggle Inc., 2019). 

Modify: 3 project ideas 

based on feedback. Create: 

Web scraping scripts using 

Beautiful Soup (Python 

Software Foundation, 2019). 

5 

Generative 

Models and 

Embeddings, 

Computational 

Resources 

workshop, Project 

Mentor Matching 

Module from v1 wk4. Use: 

Holyoke Computing Cluster 

tutorial (MGHPCC, 2018). 

6 GANs Module from v1 wk5. 

7 

Project Data 

Review, 

Reinforcement 

Use: Metacar webapp 

(thibo73800, 2019), OpenAI 

Gym webapps (OpenAI, 

Learning 2019). Modify: TensorFlow 

starter code for RL. Create: 

Data review document to 

describe project dataset 

details. 

8 RNNs and LSTMs Module from v1 wk6. 

9 
Informal Project 

Checkpoint 

Create: Work on projects 

and discuss progress with 

staff. 

10 

GL: Art & Music, 

GL: People + AI 

Research 

Create: Finish project 

proposal. 

11 
Formal Project 

Checkpoint 

Create: Work on projects 

and show basic working 

demo to staff. 

12 

GL: Healthcare, 

Project Practice 

Lightning Talks 

Create: Present 2-minute 

project lightning talks, 

receive feedback for final 

showcase. 

13 Office Hours Create: Work on projects. 

14 
Final Presentation 

Showcase 

Create: Presented capstone 

projects to an audience of 

varying ML experience with 

lightning talks, then 

individual booths. 

15 
Project Writeup 

Due 

Create: Submit project 

writeups in the form of 

instructional blog posts. 

5.2. Student Demographics 

Of the 26 students, there were 5 (19%) second-years, 6 

(23%) third-years, 11 (42%) fourth-years, 3 (12%) graduate 

students, and 1 (4%) post-doc. Twenty students (77%) 

majored in EE/CS, 2 in Architecture, 2 in Physics & EECS, 

1 in Materials Science & Engineering, and 1 in Biological 

Engineering & Math. There were 9 Asian women, 6 Asian 

men, 5 white men, 3 Hispanic men, 1 black woman, 1 

white woman, and 1 black man. Similar to V1, 21 students 

(81%) had basic exposure to AI or ML, but commented 

that they wanted to participate in the course due to self-

perceived lack of ability to apply theory and math in 

building practical applications. 

5.3. Capstone Projects 

For V2 of the course, students were asked to work in 

groups of two for the final project due to the decrease in the 

staff-student ratio. Students started work on the projects in 

wk. 2 of the course, so they had not been exposed to all of 

the topic modules. The instructors were concerned that 

students may avoid later topics and tried to mediate this by 

giving lightning talks and sample use cases for the topics 

that would be presented later. There were 14 projects, all of 

which completed their Safe goal. All three project 

categories were represented with the majority being 

Application projects. More projects bridged multiple 
project categories than in V1, likely due to students having 

more time. 

The first project workshop was the 3 Ideas Workshop 

during wk. 4, which changed in format from the pilot due 

to the increased number of students: The staff ran two 30-

http://mit.edu/6.s198
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minute sessions of guided group presentations. For each 

session, the class was divided into four groups of 5-6 

students based on shared project topic interests. One to two 

staffers led each group, where students took turns 

presenting their 3 ideas. During the final 30 minutes of the 

class, students were encouraged to talk to others they had 

met and form groups. After the 3 Ideas Workshop, there 

were two workshops given on project skills: data collection 

and how to connect to computing resources. There was also 

a data review checkpoint assignment due in wk. 7 to 

confirm that students had completed data collection and 

processing in a timely manner. 

5.4. Post Survey Responses 

The post survey was emailed out after the course ended and 

received 17 responses (65%). Demographic results 

indicated that the participants were representative of the 

class in terms of grade level, major, gender, and ethnicity. 

Table 4 presents the responses to all linear scale questions, 

where 5 = “Strongly agree” or “Completely confident” and 

1 = “Strongly disagree” or “No confidence.” 

Table 4. Means and standard deviations of post survey 

linear scale question responses. 

 Item Mean S.D. 

1 
I felt that I was successful in this 

class. 
4.4 0.6 

2 
I am proud of what I was able to 

accomplish in my final project. 
4.2 0.8 

3 

I will be able to complete an ML 

project (of a similar level and 

scale to my final project) on my 

own. 

4.6 0.5 

4 
In this class, I saw people like 

me succeed at learning ML 
4.2 0.6 

5 

When I saw people like me 

succeed in ML, it made me feel 

that I could succeed as well. 

4.3 0.7 

6 

How confident do you feel about 

describing your project to a non-

technical person? 

4.6 0.5 

7 
The project work made me feel 

uncomfortable 
1.6 0.9 

As a follow-up to Question 1, we asked “What did you use 

to determine your sense of success in the class?”. The 

majority of responders attributed their sense of success to 

work on the final project (94%) and understanding of the 

concepts presented in class (88%). Responses to “Which of 

the following elements from the course did you use in your 

project work?” also indicated that the modules and 

workshops were helpful. More than half of responders said 

they used concepts/architectures from the units (82%), 

used independent researching skills [developed] through 

the assignments (59%), or used the 3 Ideas Workshop to 

[help] improve or refine [their] project idea (59%). 

When asked “How can you see yourself using the tools, 

techniques, and methods presented in the class?”, all 

responders gave multiple use cases. The most prevalent 

were: Applying ML to new domains (82%); Be(ing) able to 

talk about it with experts (77%); Being able to talk about it 

with non-experts (77%); Using it for fun (65%); 

Developing my final project further (65%); Using it [for] 

another class (65%); and Using it as part of a job (65%). 

When asked “How did your views on ML change through 

taking this course?”, 53% mentioned a “personal 

realization of the easy application potential of ML”; 18% 

had “increased enjoyment of the field”; 18% wrote 

“realizing limitations of ML”; and 12% were “excited…the 

field is rapidly evolving”. 

6. DISCUSSION 
The course aimed to help students with some coding 

background and none to novice AI or ML knowledge gain 

self-efficacy in ML. In general, students highly enjoyed the 

course, felt that it helped demystify ML, and were 

encouraged to pursue independent, personal ML projects in 

the future. We felt that both iterations of the course were 

successful in our goals, with V2 allowing students more 

time for projects. Survey responses from V2 indicate that 

successful completion of capstone projects most heavily 

influenced development of self-efficacy in ML, and that the 

modules portion of the course was successful at preparing 

students for the projects. While our results are promising, 

we recognize limitations to replication: there was a high 

staff-to-student ratio and many students had exposure to 
ML/AI before the course (although we found no significant 

difference in performance between students of varying 

levels of ML and coding backgrounds). 

We believe that the following 4 components of the course 

best contributed to its success: First, while the modules did 

not teach all of the skills and concepts students needed for 

every type of ML project, we hypothesize that the hands-on, 

exploratory lab work for each application helped students 

feel more comfortable playing with new architectures. This 

encouraged students to conduct research and learn on their 

own – 3 teams from V2 (21%) even applied methods not 

taught in the class to their projects. Second, TensorFlow.js 

allowed beginners to dive directly into exploring complex 

and visually appealing ML applications – modifying ML 

models in the browser allowed for near-instantaneous 

feedback and reduced infrastructure problems. Third, 

mentors for each project greatly assisted students in 

properly scoping problems and finding resources. Fourth, 

the blog post style for the final project writeup helped 

students learn disciplinary sharing norms, situate their work 

in the community, and identify with other ML developers, 

enthusiasts, and researchers. Thirteen of the 14 projects 

from V2 shared their project blog posts publicly on the web 

(Lao & Abelson, 2018). 

In replicating this course, the advanced modules (wk. 4+) 

can be replaced based on the types of projects instructors 

want to encourage (e.g. more types of RNNs, LSTMs, and 

GANs for an arts-focused ML class). Additionally, we 

found that transfer learning was extremely useful – students 

were able to adjust and retrain high quality pre-built 

models with great results for repurposed use instead of 

spending a long time trying to create (often ineffective) 

models from scratch. We recommend encouraging students 

to research and experiment with different architectures as 
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often as possible. Many of the students without coding 

experience also suggested that a version of the course could 

be adapted for high school students. 

7. REFERENCES 
Bandura, A. (1977). Self-Efficacy: Toward a Unifying 

Theory of Behavioral Change. Psychological Review, 

84(2), 191–215. 

Bandura, A. (2004). Health Promotion by Social Cognitive 

Means. Health Education Behavior: The Official 

Publication of the Society for Public Health Education, 

31(2), 143–164. 

Bandura, A., Barbaranelli, C., Caprara, G. V., & Pastorelli, 

C. (2001). Self-Efficacy Beliefs as Shapers of Children’s 

Aspirations and Career Trajectories. Child Development, 

72(1), 187-206. 

Deeplearn.JS. (2018). Font-Explorer. Retrieved November 

18, 2019, from https://github.com/mintingle/font-explorer 

Dror, R., & Ng, A. (2018). CS229: Machine Learning. 

Retrieved November 18, 2019, from 

http://cs229.stanford.edu/syllabus.html 

Ha, D., Jongejan, J., & Johnson, I. (2019). Draw Together 

with a Neural Network. Retrieved November 18, 2019, 

from https://magenta.tensorflow.org/sketch-rnn-demo 

Harley, A. (2015). 3D Visualization of a Convolutional 

Neural Network. Retrieved November 18, 2019, from 

http://scs.ryerson.ca/~aharley/vis/conv/ 

Harty, H., & Beall, D. (1984). Toward the Development of 

a Children’s Science Curiosity Measure.  Journal of 

Research in Science Teaching, 21(4). 425-436. 

Kaggle Inc. (2019). Kaggle: Your Home for Data Science. 

Retrieved November 18, 2019, from 

https://www.kaggle.com/ 

Google. (2018). People + AI Research Initiative: 

Deeplearn.JS Model Builder Demo. Retrieved November 

18, 2019, from http://courses.csail.mit.edu/6.s198/spring-

2018/model-builder/src/model-builder/ 

Karpathy, A. (2015). RecurrentJS Sentence Memorization 

Demo. Retrieved November 18, 2019, from 

https://cs.stanford.edu/people/karpathy/recurrentjs/ 

Kolb, D. A. (2014). Experiential learning: Experience as 

the source of learning and development. Pearson FT 

Press, New Jersey. Print. 

Lao, N., & Abelson, H. (2018). 6.S198: Deep Learning 

Practicum, Fall 2018. Retrieved November 18, 2019, 

from http://mit.edu/6.s198 

Lao, N., Lee, I., & Abelson, H. (2019). A Deep Learning 

Practicum: Concepts and Practices for Teaching 

Actionable Machine Learning. 12th Annual International 

Conference of Education, Research and Innovation 

(ICERI’19), 10. International Academy of Technology, 

Education and Development (IATED). 

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., 

Erickson, J., Malyn-Smith, J., & Werner, L. (2011). 

Computational Thinking for Youth in Practice. ACM 

Inroads, 2(1), 32-37. 

The MGHPCC. (2018). The Massachusetts Green High 

Performance Computing Center. Retrieved November 18, 

2019, from http://www.mghpcc.org 

Mohri, M. (2018). Foundations of Machine Learning – 

CSCI-GA.2566-001. Retrieved November 18, 2019, from 

https://cs.nyu.edu/~mohri/ml18/ 

Python Software Foundation. (2019). Beautiful Soup, 

version 4.8.1. Retrieved November 18, 2019, from 

https://pypi.org/project/beautifulsoup4/ 

Nakano, R. (2017). GAN Playground – Explore Generative 

Adversarial Nets in your Browser. Retrieved November 

18, 2019, from https://reiinakano.github.io/gan-

playground/ 

Nakano, R. (2018). Deeplearn.JS Style Transfer Demo. 

Retrieved November 18, 2019, from 

https://reiinakano.github.io/fast-style-transfer-

deeplearnjs/ 

OpenAI. (2019). Gym. Retrieved November 18, 2019, from 

https://gym.openai.com/ 

Papert, S. (1980). Mindstorms: Children, computers and 

powerful ideas. Basic Books, New York. Print. 

Shapiro, R. B., Fiebrink, R., & Norvig, P. (2018). How 

Machine Learning Impacts the Undergraduate Computing 

Curriculum. Communications of the ACM, 61(11), 27-29. 

Smilkov, D., Thorat, N., Assogba, Y., Yuan, A., Kreeger, 

N., Yu, P., Zhang, K., Cai, S., Nielsen, E., Soergel, D., 

Bileschi, S., Terry, M., Nicholson, C., Gupta, S. N., 

Sirajuddin, S., Sculley, D., Monga, R., Corrado, G., 

Viégas, F. B., & Wattenberg, M. (2019). TensorFlow.js: 

Machine Learning for the Web and Beyond. CoRR. 

Stoj.io, Use All Five, Creative Lab, and PAIR team at 

Google. (2018). Teachable Machine. Retrieved 

November 18, 2019, from 

https://teachablemachine.withgoogle.com/v1/  

TensorFlow. (2018). Embedding projector – visualization 

of high-dimensional data. Retrieved November 18, 2019, 

from http://projector.tensorflow.org/ 

thibo73800. (2019). Metacar: A reinforcement learning 

environment for self-driving cars in the browser. 

Retrieved November 18, 2019, from 

https://www.metacar-project.com/ 

Weinburgh, M. H., & Steele, D. (2000). The Modified 

Attitudes Toward Science Inventory: Developing an 

Instrument to Be Used with Fifth Grade Urban Students. 

Journal of Women and Minorities in Science and 

Engineering, 6(1). 87-94. 

Wu, H. K., & Huang, Y. L. (2007). Ninth-Grade Student 

Engagement in Teacher-Centered and Student-Centered 

Technology-Enhanced Learning Environments. Science 

Education, 91(5), 727-749.

 

https://github.com/mintingle/font-explorer
http://cs229.stanford.edu/syllabus.html
https://magenta.tensorflow.org/sketch-rnn-demo
http://scs.ryerson.ca/~aharley/vis/conv/
https://www.kaggle.com/
http://courses.csail.mit.edu/6.s198/spring-2018/model-builder/src/model-builder/
http://courses.csail.mit.edu/6.s198/spring-2018/model-builder/src/model-builder/
https://cs.stanford.edu/people/karpathy/recurrentjs/
http://mit.edu/6.s198
http://www.mghpcc.org/
https://cs.nyu.edu/~mohri/ml18/
https://pypi.org/project/beautifulsoup4/
https://reiinakano.github.io/gan-playground/
https://reiinakano.github.io/gan-playground/
https://reiinakano.github.io/fast-style-transfer-deeplearnjs/
https://reiinakano.github.io/fast-style-transfer-deeplearnjs/
https://gym.openai.com/
https://teachablemachine.withgoogle.com/v1/
http://projector.tensorflow.org/
https://www.metacar-project.com/

	1. INTRODUCTION
	2. BACKGROUND
	2.1. Theoretical vs. Practical Approaches
	2.2. Experiential Learning: Use-Modify-Create
	2.3. Self-Efficacy and Engagement
	3. INSTRUMENTS AND ASSESSMENT
	4. DEEP LEARNING PRACTICUM V1
	4.1. Student Demographics
	4.2. Teaching Staff and Industry Mentors
	4.3. Capstone Projects
	4.4. Learnings for V2
	5. DEEP LEARNING PRACTICUM V2
	5.1. Changes from V1
	5.2. Student Demographics
	5.3. Capstone Projects
	5.4. Post Survey Responses
	6. DISCUSSION
	7. REFERENCES

