
Empowering Mobile-Only App Generation — Offline AI
Code Generation with App Inventor

by

Joyce Yuan
B.S. Electrical Engineering and Computer Science, MIT, 2024

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTERS OF ENGINEERING IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2025

© 2025 Joyce Yuan. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Joyce Yuan
Department of Electrical Engineering and Computer Science
May 9, 2025

Certified by: Harold Abelson
Class of 1922 Professor of Computer Science and Engineering, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee
Graduate Officer, Department of Research

2

Empowering Mobile-Only App Generation — Offline AI Code
Generation with App Inventor

by

Joyce Yuan

Submitted to the Department of Electrical Engineering and Computer Science
on May 9, 2025 in partial fulfillment of the requirements for the degree of

MASTERS OF ENGINEERING IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

ABSTRACT

As digital tools become more accessible, creating software is becoming a powerful way
for anyone to make real-world impact. Computational action—the idea that learners can
build computing artifacts with authentic relevance to their lives and communities—reframes
computing as a tool for empowerment. Low-code platforms like MIT App Inventor support
this vision by fostering digital agency through purposeful creation. Recent advances in large
language models (LLMs) expand these possibilities further by enabling code generation from
natural language, offering a timely opportunity to lower the barrier to app creation.

MIT App Inventor has long championed accessibility, allowing even young learners in
underserved regions to build meaningful mobile apps. Its natural language tool, Aptly,
enables users to describe app ideas and generate functional code. However, Aptly’s reliance
on cloud-based LLMs limits access for users without stable internet—often those who could
benefit most.

This thesis addresses that challenge by enabling AI-powered app creation to run entirely
offline on mobile devices. We fine-tune and quantize LLaMA 3B using QLoRA and deploy it
on iOS with MLC LLM, enabling on-device inference without internet. We also introduce a
custom evaluation framework tailored to Aptly’s grammar, combining a Tree-sitter parser
and a modified CodeBLEU metric to assess both semantic and syntactic quality. Using
curated evaluation datasets, we benchmark out-of-box and fine-tuned models across prompting
strategies. In our evaluations, fine-tuned GPT-4.1 achieved the highest normalized CodeBLEU
score (0.36± 0.12) and parsed over 81% of completions, outperforming its baseline by more
than 5%. QLoRA-finetuned LLaMA improved parseability by 11.7% over its base model,
showing progress in adapting smaller models to the Aptly domain, though semantic fidelity
remains a challenge. Our results show that offline natural language–to–app generation is
feasible, and that smaller models can be adapted to the Aptly domain. By lowering the
technical and infrastructural barriers to app creation, this work lays the foundation to
empower AI-assisted programming that is accessible, offline, and on the phone.

Thesis supervisor: Harold Abelson
Title: Class of 1922 Professor of Computer Science and Engineering

3

4

Acknowledgments

First and foremost, I want to thank my advisor, Professor Hal Abelson, for being the most
patient, thoughtful, and inspiring mentor I could’ve asked for. Thank you for always taking
the time to offer guidance, support, and encouragement—and for giving me the opportunity
to work on such a cool project in the first place.

A huge thank you to my supervisors, Evan Patton and David Kim. Evan, thank you for
your endless knowledge and for always being willing to dive into the depths of debugging
and permission errors with me (and usually emerging victorious). David, thank you for your
responsiveness, and your steady insightful feedback throughout this process.

I want to thank Jennet Zamanova for helping curate a massive dataset of auto-labeled
examples for our experiments, and Jacky Chen for building out the evaluation pipeline and
helping analyze all the results. Shoutout to my LLM experiments and evals team—Kidus
Yohannes and Catherine Zhu—couldn’t have done it without our collective brainpower. And
a shoutout to Ashley Granquist, whose work laid the foundation for much of what I built
on—thank you for paving the way.

A special shoutout to the support of my friends, my housemates, family, the vibrant
2W wing community, and my emotional support plushies for getting me through slumps.
Shoutout to the semesterly Teaholic boba runs (essential), to Vester for being the ever-reliable
caffeine source (and to Arianna Scott for being a fellow dedicated Vester go-er :), and to the
Capital One free drinks on Mondays. To the entire App Inventor team—thank you for being
such a warm, supportive, and genuinely fun community to work with.

5

6

Contents

List of Figures 9
List of Tables 11

1 Introduction 13
1.1 Motivation and Overview . 13
1.2 MIT App Inventor and Aptly . 14
1.3 Research Questions . 15
1.4 Contribution . 15

2 Background & Preliminaries 17
2.1 Child-AI Co-Creation and Educational Theory 17
2.2 Machine Learning on Edge Devices . 17

2.2.1 State of the Art for Mobile LLM Deployment 19
2.3 Tiny Machine Learning Techniques . 20

2.3.1 Quantization . 20
2.3.2 Pruning . 21
2.3.3 Knowledge Distillation . 21

2.4 Fine-tuning Techniques for LLMs . 21
2.4.1 Standard Fine-tuning . 22
2.4.2 Continued Pretraining . 22
2.4.3 Parameter-Efficient Fine-Tuning (PEFT) 22

2.5 Code Generation Benchmarks . 22
2.5.1 Motivation . 23
2.5.2 Survey of Metrics . 23

2.6 Summary . 24

3 System Design: Aptly on Phone 25
3.1 Background on Aptly and System Architecture 25

3.1.1 MIT App Inventor and the Role of Aptly 25
3.1.2 The Aptly Language and Code Generation Pipeline 27
3.1.3 System Architecture and Integration with App Inventor 28

3.2 Aptly Only on the Phone Architecture . 29
3.2.1 App Inventor Server on Mobile . 31

3.3 Model Selection Under Mobile Constraints 32
3.3.1 System Constraints and Base Model Selection 32

7

3.4 Finetuning LLaMA 3B . 32
3.5 Deploying LLM on the Edge . 34

3.5.1 Offline Chatbot via Local LLaMA Integration 36

4 Evaluation Framework 39
4.1 Dataset Construction . 40

4.1.1 Dataset Overview . 40
4.1.2 Datasets . 41

4.2 Metric Selection and Adaptation . 42
4.2.1 Preliminary Experimentation: HumanEval and CodeBLEU 42
4.2.2 Adapting CodeBLEU for Aptly . 44

4.3 Tree-sitter Parser for Aptly . 45
4.4 Custom CodeBLEU-Based Evaluation Pipeline 46

5 Results and Analysis 49
5.1 Evaluation of Out-of-Box Models . 50

5.1.1 Models and Prompting Methods . 50
5.1.2 Evaluation Setup . 51
5.1.3 Results Summary . 51

5.2 Cross-Validation Evaluation of Finetuned Llama 54
5.2.1 Fine-Tuning Robustness Across Folds 54
5.2.2 Fine-tuned vs Baseline Performance Comparison Across Folds 56

5.3 Evaluation of Fine-Tuned Models . 58
5.4 Preliminary User Studies and Additional Experiments 62

5.4.1 Preliminary User Studies . 62
5.4.2 Technical Supplementary Experiments 63
5.4.3 Conclusion . 63

6 Discussion & Future Work 65
6.1 Discussion . 65
6.2 Future Work . 65

6.2.1 Engineering Extensions . 66
6.2.2 Model Improvement and Optimization 66
6.2.3 Studying User Impact and Accessibility 66

6.3 Conclusion . 67

A Resources and Additional Experiments 69
A.1 Resources and Reproducibility . 69
A.2 Python Baseline Experiments . 69
A.3 Model Pruning Trials . 71

B Configurations 73
B.1 System Text for Aptly Rule-Based Prompting 73
B.2 MLC Chat Config . 75

References 79

8

List of Figures

1.1 Recreating Space Invaders Game on the App Inventor web app 14

2.1 The model size of llms over the past few years have grown faster than our
development of GPUs with more memory [11], causing a gap and a need for
smaller models . 18

3.1 User can use natural language to describe their app, click on Code It!, and
Aptly will help generate it. 26

3.2 Magic 8 Ball App created by Aptly from description in Figure 3.1 26
3.3 An example of the Aptly code in Listing 3.1.2 and its correspondence to the

App Inventor interface. 28
3.4 User flow for Aptly app generation: first the user offers a description for what

they want to create, then we use semantic search to add several example pairs
for few shot prompting; the constructed prompt is sent to a third party LLM,
which return the Aptly code that gets parses into the App Inventor app on
the web app [8]. 29

3.5 Interaction diagram for MIT App Inventor with Aptly [8]. 30
3.6 Aptly on the Phone: LLaMA 3B running locally through MLC LLM on iOS.

Screenshots from the live demo, which can be viewed at this link. 36
3.7 LocalChatbot App showing how to run a local LLaMA model offline. The API

key is set to "local", enabling fully on-device inference without any internet
connection. 37

5.1 CodeBLEU Scores Across Out-of-Box Models and Prompting Strategies . . . 52
5.2 Parsing Success Rate Across Out-of-Box Models and Prompting Strategies . 53
5.3 Weighted n-gram match (mean ± 95% CI) for each fine-tuned model across

the five folds. 55
5.4 Weighted n-gram match (mean ± 95% CI) for fine-tuned and baseline models

across all folds. 56
5.5 Per-fold weighted n-gram match differences (fine-tuned minus baseline), with

t-test results. 57
5.6 Per-fold parseability differences (fine-tuned minus baseline), with t-test results. 58
5.7 Train loss and accuracy curve of finetuning job for OpenAI 59
5.8 Normalized CodeBLEU (z-score) across model and prompting configurations

(mean ± 95% CI). 60

9

https://www.youtube.com/shorts/lve7uS41sKk

5.9 Parseable completions (out of 409) per model and prompting setup. 61

A.1 CodeBLEU evaluation results on the Python Concode dataset (top) and MBPP
dataset (bottom). 70

10

List of Tables

2.1 Comparison of Code Generation Evaluation Metrics 24

4.1 Line Count Statistics for Each Dataset . 42
4.2 Comparison of Evaluation Metrics for Code Generation 45

5.1 Normalized codebleu score for each model and prompting strategy 52
5.2 Weighted n-gram match and parseable output count for each fine-tuned model

(out of 409 examples). 55
5.3 Weighted n-gram match comparison per fold. 56
5.4 Parseable output comparison per fold. 57
5.5 Parseable output counts (out of 409) per model. 61

11

12

Chapter 1

Introduction

1.1 Motivation and Overview

Artificial intelligence and mobile technologies have the potential to profoundly impact the
way people around the world create, learn, and solve problems. However, access to these
technical innovations remain deeply uneven because AI-powered tools often rely on high
bandwidth, cloud compute, and technical expertise. Underserved communities continue to
face systemic barriers to engaging with or benefiting from emerging technologies.

MIT App Inventor is a platform designed to bridge this gap, offering a block-based,
beginner-friendly environment used by tens of millions of users for building mobile apps
without code. In 2022, the platform introduced Aptly, an AI-powered tool that goes one
step further: it uses large language models (LLMs) to generate entire mobile apps from
natural language descriptions. However, Aptly in its current form depends on cloud-based
LLM APIs such as OpenAI’s GPT or Google Gemini. This reliance on constant and stable
internet connectivity severely limits who can use the tool, especially in regions where WiFi
infrastructure is sparse or expensive. As a result, the very users who would benefit most from
accessible, AI-powered programming are often unable to access it.

Recent progress in TinyML and on-device inference has introduced a new paradigm for
deploying large language models: running them directly on mobile phones. With quantization
techniques, low-rank adaptation, and lightweight inference runtimes, it is now feasible to
move beyond server-based models and support offline natural language processing entirely at
the edge.

This thesis explores the feasibility, design, and implementation of running Aptly’s natural
language-to-app generation pipeline entirely on-device. Specifically, we investigate how to (1)
embed a fine-tuned LLM capable of generating App Inventor code on an iPhone using MLC
LLM, and (2) evaluate Aptly’s performance through a benchmark and testing framework.
The overarching goal is to push the boundaries of mobile app creation—making it truly
accessible, independent of internet access, and powered by AI.

13

1.2 MIT App Inventor and Aptly

MIT App Inventor is a free, block-based programming platform that allows users to create fully
functional mobile apps through a drag-and-drop interface. Launched in 2009, App Inventor
was designed to make app development approachable for everyone, especially students and
first-time programmers. Instead of writing code, users piece together visual programming
blocks that represent logic, data, and UI components. Over the years, the platform has been
used by tens of millions of people around the world to create apps that address real problems
in their communities—from health tools and learning aids to games and utilities.

Beyond just building apps, the mission of App Inventor is to promote computational
thinking and empower people—particularly those in underserved communities—to become
creators of technology rather than just consumers. The platform is used in schools, after-
school programs, and community centers globally, with a particular focus on inclusion and
accessibility. As of 2023, MIT App Inventor has empowered over 18 million learners across
more than 200 countries and regions to create mobile applications, with nearly half of these
users residing in developing nations. Collectively, these users have built over 100 million
apps, demonstrating the platform’s significant role in democratizing mobile app development
worldwide [1].

In 2022, MIT App Inventor introduced Aptly [2], a new AI-driven feature that allows
users to generate apps by simply describing them in natural language. Aptly leverages large
language models (LLMs) to translate freeform English descriptions into structured code
that can be rendered in the App Inventor interface. For example, a prompt like “a quiz
app with three multiple choice questions and a score tracker” can result in an automatically
generated App Inventor project with screens, components, and blocks pre-populated to match
the description. This lowers the barrier for beginners and opens the door to rapid app
prototyping by users who may have never seen a block of code.

Aptly represents a powerful extension of App Inventor’s vision: to democratize computing
education and make meaningful app creation accessible to anyone, regardless of background.

Figure 1.1: Recreating Space Invaders Game on the App Inventor web app

14

1.3 Research Questions

The core motivation behind this thesis stems from two fundamental questions regarding the
accessibility and effectiveness of MIT App Inventor’s Aptly tool:

1. How can we enable offline natural language-to-app generation on mobile
edge devices using Aptly and App Inventor? Currently, Aptly requires constant
internet connectivity to interact with cloud-based large language models (LLMs). This
dependency severely restricts access, particularly in underserved areas with limited
or unstable internet connections. The first motivating question addresses whether
recent advancements in tiny machine learning and on-device inference can enable the
deployment of Aptly’s LLM directly on mobile devices, thus removing the reliance on
cloud infrastructure.

2. How can we effectively measure Aptly’s performance? Evaluating Aptly’s
ability to accurately generate functional mobile apps from natural language descriptions
is challenging. Standard metrics may not fully capture the usability, correctness, or
practical value of the generated apps. The second motivating question explores the
need to create a tailored evaluation framework that can reliably assess the quality and
accuracy of Aptly-generated code, thus ensuring continuous improvement and usability
of the tool.

1.4 Contribution

This thesis makes four primary contributions aimed at addressing the motivating questions
outlined above:

1. A proof-of-concept implementation of Aptly running entirely offline on
mobile devices. Specifically, we fine-tune the open-source LLaMA 3B model using the
QLoRA method on a domain-specific dataset, then leverage the MLC LLM framework
to quantize and package the model for efficient inference within an iOS App Inventor
application. We provide a live demonstration showcasing Aptly functioning fully offline.

2. A custom evaluation framework for Aptly-generated code using custom
CodeBLEU. We introduce a tailored version of the CodeBLEU metric, integrating a
newly created Tree-sitter parser specifically designed for the Aptly code format. This
framework enables precise, structured evaluation of Aptly’s performance, particularly
suited to its unique visual programming syntax.

3. Curation of datasets and a thorough benchmarking and analysis of Aptly’s
current code-generation methodologies. We curate a few datasets (both manually
labeled and auto labeled) that allow us to finetune and test various generation meth-
ods. Leveraging the new evaluation framework, we comprehensively evaluate Aptly
across various model setups, including few-shot prompting versus rule-based prompting,
comparing cloud-based models (OpenAI, Gemini, Claude) against locally deployed,

15

fine-tuned models. This analysis provides valuable insights into Aptly’s strengths,
weaknesses, and potential areas for improvement. In particular, we find that fine-tuned
GPT-4.1 achieves the best overall performance, with a normalized CodeBLEU score of
0.36± 0.12 and over 81% syntactic validity, while QLoRA-finetuned LLaMA improves
parseability by 11.7% over its base model but still lags in semantic fidelity.

4. Preliminary user studies examining initial user reactions and interactions
with Aptly. As an additional contribution, we conduct early-stage qualitative user
studies to better understand how novice programmers and students interact with and
respond to Aptly’s natural language-to-app capabilities. These insights help guide
future developments and usability enhancements.

The full evaluation pipeline, research scripts, and associated datasets at https://github.
com/mit-cml/eval-codegen-aptly.

The remainder of this thesis is organized as follows: Chapter 2 provides technical back-
ground on MIT App Inventor, Aptly architecture, relevant machine learning techniques, and
code evaluation benchmarks. Chapter 3 describes the system architecture and implementation
of Aptly on the phone. Chapter 4 presents the design of the Aptly evaluation framework
and the process for building the dataset. Chapter 5 reports experimental results and user
feedback. Finally, Chapter 6 discusses limitations, future work, and broader implications.

16

https://github.com/mit-cml/eval-codegen-aptly
https://github.com/mit-cml/eval-codegen-aptly

Chapter 2

Background & Preliminaries

2.1 Child-AI Co-Creation and Educational Theory

Programming has long served as both a cognitive scaffold and creative outlet for young
learners. Constructionism, first introduced by Papert [3], frames learning as a process where
students build meaningful artifacts. This idea underpins tools like Scratch [4], which allows
children to create interactive media, and MIT App Inventor [5], which enables them to design
functional mobile apps that address real-world problems. These platforms support what
Tissenbaum et al. call computational action—applying code to engage with and transform
the world [6].

Large Language Models (LLMs) offer a promising extension of this paradigm. Instead
of acting as passive instruction tools, they can serve as collaborative co-creators—helping
learners brainstorm ideas, scaffold logic, and articulate design goals. Conversational AI
agents, such as smart speakers or chat-based assistants, have already been shown to help
guide children through structured tasks and reading activities [7].

In the context of mobile app development, tools like Aptly [8] and App Planner [9] are
pushing the boundaries of what learners can create. These systems use natural language
prompts to generate working mobile applications, allowing students to iterate on ideas in
real time and reflect on both technical and human-centered design considerations. Early user
studies with high school students suggest that such tools increase confidence and broaden
perspectives on the design process, especially when learners consider the societal impact of
their apps.

As LLMs become more accessible and efficient, their role in educational settings may
shift even further—from tutors to creative partners. This thesis builds on this vision by
investigating how to make these tools available offline, empowering children and educators in
bandwidth-limited environments to co-create with AI and take computational action into
their own hands.

2.2 Machine Learning on Edge Devices

Large language models (LLMs) are AI systems trained on vast amounts of text data to
understand and generate human-like text across various contexts. They use deep learning

17

techniques, particularly transformer architectures introduced by Google in 2017 [10], to
predict and produce text based on input prompts. LLMs gained prominence around 2020
with the release of models like OpenAI’s GPT-3, which demonstrated impressive capabilities
in natural language processing, translation, and code generation. The significance of LLMs in
accessible coding lies in their ability to assist people with little coding experience in writing
functions, solving automated tasks, or even building apps. These models reduce the time and
effort required for coding tasks and have the potential to democratize software development
by lowering the barrier to entry.

Figure 2.1: The model size of llms over the past few years have grown faster than our
development of GPUs with more memory [11], causing a gap and a need for smaller models

The goal of this thesis is to enable offline, mobile-first natural language-to-code generation.
However, realizing this vision requires overcoming substantial technical challenges: today’s
most powerful large language models (LLMs) demand compute and memory resources far
beyond the capabilities of mobile hardware. Understanding these challenges—and the land-
scape of solutions developed to address them—is crucial for contextualizing the contributions
of this work.

Large-scale LLMs such as GPT-3 [12], PaLM [13], and LLaMA [14] have achieved
remarkable results on a wide variety of tasks, from natural language understanding to
programming. Yet these models often have hundreds of billions of parameters, requiring
hundreds of gigabytes of storage and trillions of floating-point operations per inference. For
instance, GPT-3 (175B parameters) needs over 350GB of memory in standard floating-point
format; OpenAI’s GPT-4 has 1.76 trillion parameters, and Google’s Gemini model, introduced
in 2023 has 540 billion parameters [15].

Mobile devices, by contrast, impose strict constraints:
• Memory: 4–12 GB of RAM is typical for smartphones.

18

• Compute: ARM CPUs, mobile GPUs, and NPUs offer much less FLOPS than server-
class accelerators.

• Energy: Power consumption must be minimized for battery longevity.

• Thermal Budget: Sustained high performance quickly leads to overheating and
throttling.

Using the third party services provided by companies for their PPMs often require stable
wifi, which isn’t always possible in under privileged areas. These disparities motivate the
need for significant model optimization before deployment on mobile platforms.

2.2.1 State of the Art for Mobile LLM Deployment

To enable LLMs to run on mobile and edge devices, the machine learning community has
explored a diverse set of strategies that reduce memory, compute, and energy demands. These
strategies aim to preserve task performance while adapting models to the unique constraints
of on-device inference. Below, we briefly review four major technical directions:

• Distillation [16]: This approach involves training a compact student model to imitate
the behavior of a larger, high-performing teacher model. The student is trained not just
on task labels, but also on the teacher’s soft outputs (probability distributions), which
convey richer semantic information. For example, DistilBERT reduces BERT’s size
by 40% while retaining over 95% of its language understanding performance, making
it far more practical for mobile inference. Distillation has also been explored in code
generation contexts, such as training smaller Transformer models on GPT-3 outputs
for program synthesis tasks.

• Quantization [11, 17, 18]: Quantization reduces the numerical precision of model
parameters (e.g., from 16-bit or 32-bit floats to 8-bit or 4-bit integers), greatly reducing
memory usage and increasing hardware efficiency. This technique, when applied post-
training or during training (as in quantization-aware training), can significantly reduce
model size and speed up inference with minimal loss in accuracy. Quantization is
especially impactful in edge scenarios where memory bandwidth and thermal budgets
are limited.

• Pruning [18–20]: Pruning eliminates weights or entire structures (such as attention
heads or MLP channels) that have limited contribution to a model’s output. It can be
applied element-by-element or via structured approaches like channel or filter pruning,
which maintain the network’s architectural consistency. Structured pruning techniques,
in particular, are favored for mobile inference because they align better with hardware
acceleration and lead to more predictable compute reductions.

• Efficient Model Architectures: Instead of compressing large models, another
strategy is to design inherently efficient networks tailored for constrained environments.
MobileBERT [21] re-engineers BERT with bottleneck structures and inverted residual
layers, achieving competitive performance with significantly fewer resources. More

19

recently, TinyLlama [22] offers a 1.1B parameter model trained from scratch on high-
quality corpora, reaching strong accuracy on language benchmarks while being small
enough for deployment on edge devices.

Beyond these algorithmic techniques, practical deployment of compressed LLMs requires
compiler-level optimization and hardware integration. Emerging toolchains such as MLC
LLM [23] address this need. MLC LLM allows developers to:

• Quantize and compile LLMs using TVM-based kernel fusion,

• Automatically generate platform-specific binaries (e.g., Metal for iOS, Vulkan for
Android),

• Deploy models on-device with a small runtime, abstracting away hardware and driver
complexity.

This framework represents an important step forward: it shifts LLM deployment from
being a cloud-only capability to one that is viable in real-world, resource-constrained, offline-
first settings. MLC LLM serves as the foundation for this thesis’s system implementation,
enabling our custom-trained Aptly model to run entirely offline on iOS devices.

This thesis builds on these methods to push the boundary of on-edge generation further:
from general natural language understanding to practical, offline app creation for all.

2.3 Tiny Machine Learning Techniques

Because mobile deployments face severe memory and compute bottlenecks, a variety of
TinyML techniques have been proposed to compress models without sacrificing too much
accuracy. Understanding these methods provides critical tools for bringing models like Aptly
offline. These techniques are essential in addressing the challenges posed by the limited
computational power and memory of edge devices, enabling efficient on-device processing
and real-time decision-making [18].

2.3.1 Quantization

Quantization reduces the bit-width of model parameters, decreasing memory usage and
accelerating inference through more efficient computation. Model quantization typically
converts high-precision floating-point numbers to lower precision integers, such as 8-bit values,
thereby significantly cutting down memory and computation costs while often preserving
accuracy [11].

The basic idea is to map floating-point weights w to discrete lower-precision representations
ŵ:

ŵ = round
(
w −min(w)

∆

)
where ∆ =

max(w)−min(w)

2b − 1

where b is the number of bits (e.g., b = 8 for int8 quantization).

20

Quantization can be applied post-training (Post-Training Quantization, PTQ) or during
training (Quantization Aware Training, QAT). Recent advancements have demonstrated that
even aggressive 4-bit or 3-bit quantization can preserve the capabilities of LLMs, particularly
when combined with calibration techniques [17].

2.3.2 Pruning

Pruning further reduces model size by removing parameters deemed unnecessary. It can be
unstructured—zeroing individual weights—or structured—removing entire heads, neurons, or
channels. Structured pruning methods like channel or filter pruning maintain the original
network topology, which improves compatibility with hardware accelerators and maintains
real-time performance [20].

Formally, pruning solves:

min
M,W

L(M ⊙W ;D) subject to ||M ||0 ≤ k

where M is a binary mask over the weight matrix W , and L is the loss over dataset D.
Pruned models often exhibit surprising resilience, motivating research into the "Lottery

Ticket Hypothesis" [19]: the idea that sparse subnetworks exist which can train as effectively
as full networks.

2.3.3 Knowledge Distillation

Distillation provides another route to smaller models by teaching a compact student network
to replicate a teacher model’s soft predictions [24]. This approach often retains much of the
original model’s performance while drastically reducing the number of parameters—making
it highly compatible with edge deployments.

The training loss combines standard cross-entropy with a Kullback-Leibler divergence
term:

LKD = λLCE(y, ŷ) + (1− λ)LKL(pT , pS)

where pT and pS are teacher and student softmax outputs, respectively.
Together, these techniques provide a powerful arsenal for adapting LLMs to constrained

mobile environments—an essential step toward offline Aptly deployment.

2.4 Fine-tuning Techniques for LLMs

Compressing and optimizing a model for mobile deployment is only part of the challenge. To
perform natural language-to-App Inventor code generation effectively, a model must also be
adapted to this specific domain.

21

2.4.1 Standard Fine-tuning

Traditional fine-tuning retrains all parameters of the model on a task-specific dataset.
Although straightforward, this approach is prohibitively resource-intensive for LLMs with
billions of parameters.

2.4.2 Continued Pretraining

Continued pretraining [25] bridges the gap between general pretraining and task-specific
fine-tuning. It involves further unsupervised training of a base model on domain-relevant text
corpora. In the context of Aptly, continued pretraining on App Inventor-specific datasets
could help the model better internalize the unique patterns of block-based programming.

2.4.3 Parameter-Efficient Fine-Tuning (PEFT)

To overcome the impracticality of full fine-tuning, Parameter-Efficient Fine-Tuning (PEFT)
techniques have been developed.

LoRA [26] introduces small, trainable low-rank matrices (A,B) into each layer:

∆W = AB with A ∈ Rd×r, B ∈ Rr×d, r ≪ d

where r (rank) is typically small (e.g., r = 4), drastically reducing the number of trainable
parameters.

QLoRA [27] builds on LoRA by:

• Quantizing the model to 4-bit precision.

• Training LoRA adapters on top of frozen quantized weights.

QLoRA achieves remarkable efficiency, enabling fine-tuning of models as large as 65B
parameters on consumer-grade GPUs (24GB VRAM).

These techniques are critical for this thesis, where domain-specific adaptation must be
achievable within reasonable computational budgets.

2.5 Code Generation Benchmarks

Evaluating the output of a natural language-to-code generation system is fundamentally
different from evaluating traditional NLP tasks. While standard text generation tasks (e.g.,
translation or summarization) often rely on surface-level metrics like n-gram overlap, code
generation introduces stricter and more nuanced requirements. Code must not only resemble
the correct answer but also compile, execute, and perform the intended behavior across
diverse environments and use cases.

22

2.5.1 Motivation

Unlike natural language, source code is a highly structured language governed by strict
syntax rules and unambiguous semantics. An incorrect indentation, bracket, or variable
reference can render code invalid or cause it to behave incorrectly—even if it shares most
of its surface features with the correct solution. Moreover, there are often many valid ways
to implement the same functionality, from algorithmic variations to stylistic differences. As
a result, metrics that rely purely on text similarity (like BLEU) are often misleading in
code generation contexts, as they may penalize correct programs that differ in formatting or
variable naming.

Therefore, effective evaluation of code generation systems must go beyond surface-level
resemblance. It must account for both syntactic correctness (does the code parse and
compile?) and semantic correctness (does the code perform the correct task?). These
requirements have led to the development of code-specific benchmarks and metrics designed
to assess generated programs more meaningfully.

2.5.2 Survey of Metrics

BLEU [28] score, originally developed for machine translation, is still widely used in code
generation due to its simplicity and speed. It computes the n-gram overlap between generated
code and a reference solution, providing a proxy for similarity. However, BLEU fails to capture
the hierarchical and symbolic nature of programming languages, and it cannot assess whether
the generated code compiles or behaves correctly. As a result, BLEU is often considered a
weak signal for code generation quality, especially when used in isolation.

To address these shortcomings, the HumanEval benchmark [29] introduced a functional
evaluation protocol for Python code generation. It consists of a curated set of programming
problems, each paired with test cases that verify correctness. The primary metric, pass@k,
estimates the probability that at least one out of k generated samples passes all unit tests:

pass@k = 1−
k−1∏
i=0

(
1− c

n− i

)
where n is the total number of generations and c is the number of correct ones. This

metric focuses on functional accuracy, making it more aligned with real-world code usage,
though it requires executable code and predefined test suites for every task.

CodeBLEU [30] expands upon BLEU by incorporating language-specific structure and
semantics. It combines traditional n-gram matching with additional components that assess
abstract syntax tree (AST) similarity, data flow consistency, and code syntax rules. This
hybrid metric allows CodeBLEU to better reflect both the structure and behavior of programs,
making it more robust than BLEU in scenarios where multiple implementations are possible.

Beyond these, several other datasets have been introduced to further benchmark code
generation across domains and difficulty levels. MBPP (Mostly Basic Programming Prob-
lems) [31] provides short Python tasks with input-output-based test cases, geared toward
beginner-level reasoning. The APPS dataset [32] contains a wide range of real-world pro-
gramming interview questions with corresponding solutions, covering more complex logic

23

and algorithmic thinking. Meanwhile, CodeContests [33] focuses on competition-style
problems drawn from platforms like Codeforces and Leetcode, pushing models to reason
under constraints and optimize solutions.

Together, these benchmarks form a diverse and evolving ecosystem for assessing code
generation models. They reflect the growing recognition that natural language-to-code
evaluation requires a tailored approach—one that balances surface similarity, structural
alignment, and functional correctness. In this thesis, we build on these foundations by
developing a customized evaluation framework tailored specifically for App Inventor code,
which presents its own structural and visual logic challenges not captured by existing
benchmarks.

Table 2.1: Comparison of Code Generation Evaluation Metrics

Metric / Benchmark Syntax-
Aware

Exec.-
Based

Multi-
Output Eval

Language-
Specific

BLEU [28] × × × ×
HumanEval [29] × ✓ ✓ ✓(Python)
CodeBLEU [30] ✓ × ✓ ✓

MBPP [31] × ✓ ✓ ✓(Python)
APPS [32] × ✓ ✓ ✓(Python)
CodeContests [33] × ✓ ✓ ✓(multi-

lang)

These evaluation methods serve as important references when developing Aptly’s custom
evaluation framework and benchmarks in Chapter 4

2.6 Summary

This chapter reviewed the foundational concepts and techniques necessary for enabling
offline, AI-powered mobile app creation. We began by outlining the computational and
memory constraints of running large language models on edge devices, motivating the
need for TinyML. We then explored three key model compression strategies—quantization,
pruning, and knowledge distillation—as well as efficient fine-tuning methods suited for domain
adaptation. Finally, we examined why conventional NLP benchmarks fall short for evaluating
code generation, and surveyed specialized metrics that better capture program correctness.
Together, these components establish the technical groundwork for designing, implementing,
and evaluating an offline version of Aptly for MIT App Inventor.

24

Chapter 3

System Design: Aptly on Phone

This chapter presents the system design behind enabling Aptly’s the natural language-to-app
generation to run offline directly on the phone. Our core motivation is to support AI-powered
mobile app generation in settings with limited or no internet access, thereby extending MIT
App Inventor’s mission by making AI-powered mobile app creation accessible to underserved
communities. This required careful design choices across multiple dimensions: selecting
an appropriate base model that balances performance with mobile feasibility, exploring
fine-tuning techniques to specialize the model to Aptly’s unique code format, and identifying
lightweight inference frameworks capable of executing models on iOS devices. We began by
analyzing the system constraints of modern phones and evaluating candidate models that
could run efficiently under these limitations. A range of open-source language models was
evaluated to identify a base model suitable for both fine-tuning and on-device deployment.
We then fine-tuned our chosen model—LLaMA 3B—on a curated Aptly dataset using QLoRA
to accommodate our small-scale training corpus. Finally, we leveraged MLC LLM, a mobile
inference library, to successfully deploy the model onto an iPhone. The following sections
walk through each design decision and engineering step, culminating in a live demonstration
of Aptly running entirely offline on a phone, and closing with reflections and future directions
for this work.

3.1 Background on Aptly and System Architecture

3.1.1 MIT App Inventor and the Role of Aptly

MIT App Inventor is a widely used visual programming environment that democratizes
mobile app development by allowing users—especially novices—to build applications using
drag-and-drop programming blocks. It has been used globally by millions of students and
educators to create interactive Android and iOS applications [1]. While this block-based
approach greatly reduces the entry barrier for non-programmers, creating apps still requires
understanding control structures, event-based programming, and UI component configuration.

To lower this barrier even further, Aptly was developed as a natural language interface
layered on top of MIT App Inventor [8]. The aim of Aptly is to enable users to create, edit,
and understand App Inventor programs through conversational natural language commands,

25

Figure 3.1: User can use natural language to describe their app, click on Code It!, and Aptly
will help generate it.

thus broadening access to computational action [6]. When a user visits the Aptly site
(aptly.appinventor.mit.edu), they are able to input the app description, click Code It!, and
have Aptly generate their app, reducing the friction towards creating impactful mobile apps
(as displayed in Figure 3.1. In the context of this thesis, Aptly serves as a bridge between
large language model (LLM)-based code generation and visual programming, and is the core
system evaluated for its feasibility in offline and mobile-first educational environments.

Figure 3.2: Magic 8 Ball App created by Aptly from description in Figure 3.1

26

aptly.appinventor.mit.edu

3.1.2 The Aptly Language and Code Generation Pipeline

At the heart of Aptly lies a Python-inspired textual language that mirrors the structure of
App Inventor blocks. This design choice was deliberate: Python’s clean, pseudocode-like
syntax enhances LLM compatibility, while the language itself was constrained to maintain a
one-to-one mapping with App Inventor’s block semantics. Each valid Aptly program is also a
valid App Inventor program and vice versa. An example can be seen below:

1 Screen1 = Screen ()
2 HA1 = HorizontalArrangement(Screen1)
3 Label1 = Label(HA1 , Text = "Weight in lbs: ")
4 EarthWeight = TextBox(HA1 , NumbersOnly = True)
5 PlanetList = ListView(Screen1 , ElementsFromString = "Mercury , Venus , Mars ,

Jupiter , Saturn , Uranus , Neptune")
6 Calculate = Button(Screen1 , Text = ’Calculate ’)
7 PlanetaryWeight = Label(Screen1)
8

9 initialize gravities = {
10 "Mercury": 0.38, "Venus": 0.91, "Mars": 0.38,
11 "Jupiter": 2.34, "Saturn": 0.93, "Uranus": 0.92,
12 "Neptune": 1.12
13 }
14

15 to compute_weight(earth_lbs , planet):
16 return earth_lbs * dictionaries_lookup(planet , global gravities , "not found"

)
17

18 when Calculate.Click():
19 set PlanetaryWeight.Text = call compute_weight(EarthWeight.Text , PlanetList.

Selection)

Listing 3.1: Aptly program calculating planetary weight

The Aptly code above corresponds to the blocks below that would populate on the App
Inventor interface.

To convert natural language to Aptly code, Aptly uses few-shot prompt engineering.
When a user issues a request (e.g., “Make an app that translates my speech into one of four
languages”), Aptly constructs a prompt consisting of:

• The user’s natural language description D

• A set of example pairs ⟨di, ci⟩ where di is a description and ci is corresponding Aptly
code

These example pairs are selected using semantic similarity computed via cosine distance
on generated embeddings from either OpenAI or a third party service. This synthesized
prompt is sent to an LLM (i.e. OpenAI’s Codex/GPT models), which return Aptly code,
subsequently parsed and rendered as App Inventor blocks [12, 34]. Refer to Fig 3.4 for the
full flow.

27

Figure 3.3: An example of the Aptly code in Listing 3.1.2 and its correspondence to the App
Inventor interface.

3.1.3 System Architecture and Integration with App Inventor

Aptly is implemented as an external agent that participates in a collaborative App Inventor
session using the Real-Time Collaboration (RTC) system. The system comprises five key
components (see Figure 3.5):

• MIT App Inventor: The standard visual block-based IDE.

• RTC Server: Enables real-time collaborative editing by synchronizing actions across
clients, including Aptly.

• Aptly Server: Converts natural language to Aptly code, computes diffs, and emits
edit events to the RTC.

• Third Party LLM: Generates Aptly code given natural language and a few-shot
prompt.

• User Interface: The user issues natural language commands from the web or mobile
App Inventor client.

When a user provides a command, the following sequence occurs:

1. The App Inventor client transmits the current project (AIA file) and user command to
the Aptly server.

2. The Aptly server translates the project to Aptly code using its internal ProjectReader
and Serializer.

3. An edit prompt is generated with top-k similar example pairs and the current code.

28

Figure 3.4: User flow for Aptly app generation: first the user offers a description for what
they want to create, then we use semantic search to add several example pairs for few shot
prompting; the constructed prompt is sent to a third party LLM, which return the Aptly
code that gets parses into the App Inventor app on the web app [8].

4. The LLM returns updated Aptly code.

5. The Aptly server uses the Zhang-Shasha tree edit distance algorithm [35] to compute a
sequence of INSERT, REMOVE, UPDATE, and MATCH operations between ASTs.

6. These are compiled into RTC events (e.g., ComponentAdd, ComponentProperty) and
streamed into the live project.

This system allows Aptly to not only synthesize full apps from scratch but also perform
fine-grained edits to existing projects. For example, given the request “add a label below
the kitty that says ‘pet the kitty,’ ” Aptly can parse the new code, calculate diffs, and emit
RTC events to dynamically update the live project with minimal user intervention.

3.2 Aptly Only on the Phone Architecture

As mentioned in Section 3.1.3, the mobile version of Aptly is powered by three main services
coordinated through the App Inventor app (see the architecture diagram) in Fig 3.5: the
App Inventor server, the Aptly server, and the App Inventor Real-Time Collaboration (RTC)
server.

29

Figure 3.5: Interaction diagram for MIT App Inventor with Aptly [8].

The App Inventor server forms the core backend of the MIT App Inventor web interface,
and is responsible for serving the web-based development environment and compiling projects
from the visual block-based editor into executable app packages. It includes frontend assets
that power the drag-and-drop design experience, as well as backend Java services for project
compilation and persistence. In the context of Aptly on the phone, this component is only
partially needed—specifically, the UI layer for displaying the generated app can be preserved
without requiring the full web development interface.

The Aptly server is responsible for the natural language-to-code generation capabilities
of the system. It is implemented in Python and acts as the orchestration layer for embedding
user prompts, selecting relevant few-shot examples from a small internal dataset, formatting
prompts for the LLM, and parsing the model’s response into Aptly-compatible code structures.
It acts as both a retrieval system and a prompt constructor. Initially, this server was designed
to interface with cloud-based LLM APIs (e.g., OpenAI’s GPT models), which poses an
accessibility barrier in offline or low-connectivity environments. In the mobile version, we
replicate this functionality locally by replacing the cloud LLM with a fine-tuned, on-device
model, and executing the Aptly server logic within the mobile app itself. While the current
implementation retains the core logic in Python, porting it to JavaScript or a mobile-native
framework would be required for a fully integrated mobile stack—this is discussed in Chapter 6.

The App Inventor Real-Time Collaboration (RTC) server enables multiple users
to edit the same project simultaneously [36]. It emits and listens for editing events, such
as adding, deleting, or moving blocks, and ensures that all connected clients maintain
a synchronized view of the project. Aptly participates in this architecture as a virtual
collaborator, generating and inserting blocks in response to user interactions in real time.

30

The RTC server is implemented in JavaScript and designed for web-based collaboration. In
the context of offline mobile use, this component is less critical—especially since users are
not expected to perform real-time edits through the mobile UI.

Together, these three components define the full Aptly system. The App Inventor server
serves and renders the UI, the Aptly server interprets natural language into code using a
large language model, and the RTC server handles editing events and enables synchronous
collaboration. In the traditional web-based workflow, a user enters a prompt into the Aptly
interface (served by the App Inventor server), which is forwarded to the Aptly server for
processing. The generated blocks are then injected into the shared editing environment via
the RTC server, appearing in real time on the user’s screen.

For an offline version of Aptly to run entirely on the phone, each of these components must
either be migrated or reimagined for a local, mobile-only context. For the scope of this thesis,
we address the following: (1) we approximate the functionality of the App Inventor server by
extracting and bundling the necessary frontend components into the mobile app itself (in
section 3.2.1), thereby bypassing the need for the full server or live web editing; (2) we omit
the RTC server entirely, as real-time collaboration is unnecessary when editing is not being
performed directly by the user; (3) most critically, we remove Aptly’s dependency on a cloud
LLM by designing and integrating an on-device inference engine powered by a fine-tuned
version of LLaMA 3B (in sections 3.4). The full server is not migrated to JavaScript; future
directions for porting the Aptly server and integrating RTC functionality are discussed in
Chapter 6.

The remainder of this chapter details how each of these scoped components was imple-
mented. Section 3.3 discusses model selection and system constraints. Section 3.4 describes
the fine-tuning process with QLoRA. Section 2.2.1 introduces MLC LLM and outlines the
deployment process to iOS. The chapter concludes with a working demo of Aptly running
entirely offline and a discussion of next steps.

3.2.1 App Inventor Server on Mobile

To support offline usage of Aptly on a mobile device, we bypassed the need for the full
App Inventor server by isolating only the essential frontend assets responsible for rendering
the app interface. Rather than replicating the entire Java-based server environment, which
typically runs on Google App Engine and handles a variety of backend services, we extracted
the compiled JavaScript frontend—specifically ode.js and index.js—which powers the
drag-and-drop interface in the browser.

These assets were then bundled into the mobile app and served locally through an
embedded webview. This approach enables the rendering of Aptly-generated projects within
the standard App Inventor UI, allowing users to view and interact with their generated apps
directly on the phone without relying on any external server or internet connectivity.

To accomplish this, we configured a lightweight local server within the app to serve
the static files, ensuring compatibility with the expected paths and dependencies of the
App Inventor frontend. This solution provides a minimal but functional App Inventor
frontend experience, sufficient to render and test generated applications locally. A working
demo video can be found here. In future work, we plan to explore deeper integration of
backend services—such as local project saving or on-device compilation—by replacing or

31

https://drive.google.com/file/d/1hfnLz0NBkJHUJrwAbloYpWEYyFXseYMc/view?usp=sharing

re-implementing server logic in mobile-native code.

3.3 Model Selection Under Mobile Constraints

3.3.1 System Constraints and Base Model Selection

Deploying large language models (LLMs) on smartphones requires careful consideration of
the device’s hardware limitations. Unlike data centers with dedicated GPUs and abundant
memory, edge devices like modern laptops and mobile phones are limited in terms of power
and memory bandwidth. A standard smartphone may only have 6–12 GB of RAM shared
between the operating system and applications; higher end iPhones may feature up to 16 GB
of RAM, but typical applications are restricted to around 5–6 GB of RAM usage [37]. As a
result, deploying LLMs on these devices requires substantial model compression, quantization,
and architectural optimization.

Given these constraints, our model selection criteria focused on two primary factors:

• Runtime Memory Usage (Activations): The model’s peak RAM consumption
during inference must remain within the per-app memory limits to prevent crashes.

• On-Disk Storage Size (Weights): The model’s storage footprint must be sufficiently
small to fit within the app size limitations, allowing room for other essential assets.

We ran preliminary experiments several compact LLMs, including TinyLlama (1.1B
parameters), Anthropic Claude Instant (8B), Gemini Pro (8B), Gemini Flash (8B), and
LLaMA 3 Instruct (available in 3B, 8B, and 70B variants).

While smaller models like TinyLlama offer fast inference and low memory usage, they
lack the representational capacity to generalize across diverse domains. On the other hand,
larger models such as Mistral 7B push the limits of edge deployment and require distillation
or aggressive quantization. After empirical testing, we selected LLaMA 3B as the model
of choice due to its balanced trade-off between expressivity and deployability. Additionally,
LLaMA 3B is open-source, which enables fine-tuning on domain-specific tasks such as
Aptly code generation and flexible integration into mobile deployment frameworks. Its
relatively smaller footprint also makes it suitable for quantization without a significant loss
in performance.

3.4 Finetuning LLaMA 3B

While LLaMA 3B offers impressive general-purpose capabilities, it lacks any understanding
of the Aptly domain; Aptly’s programming language is not open-source, so its internal
syntax and structure are unfamiliar to off-the-shelf models. Thus, we perform domain-specific
fine-tuning to enable the model to generate functional and valid code in the Aptly format.

Among the various finetuning methods (including the ones introduced in section 2), we
decided to adopt the the QLoRA (Quantized Low-Rank Adapter) fine-tuning method [27]
due to our dataset constraints (reference Section 4.1). Given the limited size of our dataset

32

(on the order of a few hundred natural language and Aptly code pairs), we chose the QLoRA
fine-tuning method [27] because it is designed to train LLMs efficiently with minimal memory
and compute resources. QLoRA uses quantization-aware low-rank adapters and offloads
much of the training computation to GPU-efficient routines, making it feasible to fine-tune
billion-parameter models on a single GPU node.

We conducted fine-tuning on Amazon SageMaker using a ml.g5.2xlarge instance equipped
with a single NVIDIA A10G GPU. Training the LLaMA 3B model with QLoRA adapters
converged within approximately 2 hours.

After training, we merged the LoRA adapters with the base LLaMA 3B model weights
to create a standalone model ready for inference. The merged model demonstrated robust
understanding of natural language prompts related to Aptly and produced structured, valid
code blocks consistent with the platform’s component and block paradigm. Below we provide
a few illustrative examples comparing model outputs before and after fine-tuning.

Example prompt: Create an app that lets users draw on a canvas. There are 4 buttons:
red, green, blue, and black. When each button is clicked, the canvas background changes to
the selected color.

1 Screen1 = Screen(AppName = ’BallFling ’, ScreenOrientation = ’portrait ’, Title
= ’Screen1 ’)

2 Canvas1 = Canvas(Screen1 , Height = -2, Width = -2)
3 Ball1 = Ball(Canvas1 , PaintColor = ’&HFF0000FF ’, Radius = 10, X = 190, Y =

133)
4

5 when Ball1.Flung(x, y, speed , heading , xvel , yvel):
6 set Ball1.Heading = heading
7 set Ball1.Speed = speed
8

9 when Ball1.EdgeReached(edge):
10 call Ball1.Bounce(edge)

Listing 3.2: Finetuned Llama Output Parses Correctly

1 Screen1 = Screen(AppName = ’BallFling ’, Sizing = ’Fixed’, Title = ’Screen1 ’)
2 Canvas1 = Canvas(Screen1 , Height = -2, Width = -2)
3 Ball1 = Ball(Canvas1 , PaintColor = ’&HFF0000FF ’, Radius = 10, X = 190, Y =

133)
4

5 when Ball1.Flung(x, y, speed , heading , xvel , yvel):
6 set Ball1.Heading = heading
7 set Ball1.Speed = speed
8

9 when Ball1.EdgeReached(edge):
10 call Ball1.Bounce(edge)
11

12 when Button1.Click():
13 set Ball1.Heading = math_random_int (225, 315)
14 set Ball1.Speed = 10
15

16 when Button2.Click():
17 set Ball1.Heading = math_random_int (225, 315)
18 set Ball1.Speed = 10
19

33

20 when Button3.Click():
21 set Ball1.Heading = math_random_int (225, 315)
22 set Ball1.Speed = 10
23

24 when Canvas1.Dragged(startX , startY , prevX , prevY , currentX , currentY ,
draggedAnySprite):

25 call Ball1.Flung(currentX , currentY , Ball1.Speed , Ball1.Heading , Ball1.Xvel ,
Ball1.Yvel)

Listing 3.3: Out of box Llama with few shot prompting generated syntatically incorrect code

3.5 Deploying LLM on the Edge

To enable offline inference on iOS devices, we utilized the MLC LLM framework [38], a
mobile-friendly runtime that compiles LLMs into optimized, platform-specific binaries using
Apache TVM and WebGPU. MLC LLM supports a range of models, including LLaMA
variants, and enables quantization to 4-bit weights, drastically reducing memory usage while
retaining accuracy.

We scoped our deployment to iOS devices and used MLC LLM’s PyTorch-to-TVM
compilation pipeline to convert the fine-tuned LLaMA 3B model into a format compatible
with iOS. This involved the following steps:

1. Model Quantization: We applied symmetric 4-bit quantization to the merged LLaMA
weights to reduce the memory footprint to 1.2 GB.

2. TVM Compilation: The model was compiled to iOS Metal shaders, enabling GPU-
accelerated inference via Apple’s Metal Performance Shaders.

3. Swift Integration: The compiled model was embedded into a Swift-based demo app,
allowing natural language prompts to be inputted directly on-device.

The quantized and sharded model weights are available on Hugging Face at https:
//huggingface.co/wallie18/Aptly-Finetuned-3B-q4f16_1-MLC.� �

{
"version": "0.1.0",
"model_type": "llama",
"quantization": "q4f16_1",
"model_config": {
"hidden_size": 3072,
"intermediate_size": 8192,
"num_attention_heads": 24,
"num_hidden_layers": 28,
"rms_norm_eps": 1e-05,
"vocab_size": 128256,
"tie_word_embeddings": true,
"position_embedding_base": 500000.0,
"rope_scaling": {
"factor": 32.0,
"high_freq_factor": 4.0,

34

https://huggingface.co/wallie18/Aptly-Finetuned-3B-q4f16_1-MLC
https://huggingface.co/wallie18/Aptly-Finetuned-3B-q4f16_1-MLC

"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"

},
"context_window_size": 3072,
"prefill_chunk_size": 128,
"num_key_value_heads": 8,
"head_dim": 128,
"tensor_parallel_shards": 1,
"pipeline_parallel_stages": 1,
"max_batch_size": 128,
"disaggregation": false

},
...

}� �
Listing 3.4: Snippet of Config file settings for finetuned Llama-3B for Aptly (reference
Appendix B.2)

Deployment required several custom adjustments to package imports and memory man-
agement. Nonetheless, we successfully ran inference on-device.

Figure 3.6 shows a sequence of screenshots from the working demo, where the user spoke
the prompt: Make me an app with a button that changes the background color to blue, and
the system returns Aptly-generated code before parsing it to blocks rendered on-device; the
rendered button is able to change the background color of the app blue. The full video
demonstration is available at: https://www.youtube.com/shorts/lve7uS41sKk.

35

https://www.youtube.com/shorts/lve7uS41sKk

(a) Local Llama Generated Code (b) Generated Code Blocks (c) Fully Functional App

Figure 3.6: Aptly on the Phone: LLaMA 3B running locally through MLC LLM on iOS.
Screenshots from the live demo, which can be viewed at this link.

3.5.1 Offline Chatbot via Local LLaMA Integration

In addition to running Aptly-generated code blocks from speech, we also enabled the Aptly
Chatbot Component to interact with a fully local LLaMA model. This functionality allows
users to select "local" as the ApiKey within the ChatBot component. When this is done,
the system routes all inference requests to a local version of LLaMA instead of relying on
cloud-based APIs like OpenAI’s ChatGPT. Figure 3.7 shows the LocalChatbot app interface,
where speech input is transcribed, passed to the local LLaMA model, and the response is
rendered in a simple chat UI.

The integration requires no code changes—only setting the ApiKey to "local"—and works
entirely offline. After scanning the app with the MIT AI2 Companion and launching it on a
device, users can switch their phone to airplane mode and continue chatting with the local
LLaMA model, making this a true offline experience. This demonstrates that with only a few
configuration changes, developers and educators can leverage the same Aptly interface for
both online and offline use cases.

This deployment proves that it is technically feasible to support AI-driven mobile app
generation entirely offline. Through this integration, Aptly becomes accessible not just
to users with high-end devices or stable internet, but also to children in rural classrooms,
students in refugee camps, and innovators in areas of limited technological infrastructure.

36

https://www.youtube.com/shorts/lve7uS41sKk

(a) Component Layout

(b) Blocks Editor

Figure 3.7: LocalChatbot App showing how to run a local LLaMA model offline. The API
key is set to "local", enabling fully on-device inference without any internet connection.

37

38

Chapter 4

Evaluation Framework

Evaluating Aptly-generated code presents a unique set of challenges that make existing code
evaluation frameworks insufficient. Aptly is a grammar and tool built specifically for MIT
App Inventor, enabling natural language prompts to be translated into an intermediate code
format. This Aptly code, inspired by a Python-like syntax, can be parsed and tokenized
into .aia files —project files that MIT App Inventor can render into fully functional mobile
apps. Aptly thus bridges natural language and App Inventor projects, supporting both code
generation from prompts and parsing existing apps back into Aptly descriptions.

However, evaluating Aptly outputs is particularly difficult due to several factors:

• Non-standard, non-open-source language: Aptly’s grammar and tooling are not
fully open-source. Unlike common programming languages such as Python or JavaScript,
Aptly cannot leverage off-the-shelf parsers, linters, or evaluation frameworks. There is
also no direct programmatic way to verify if generated code behaves correctly without
manual inspection in the App Inventor environment.

• Lack of ground truth data: There is no large-scale, publicly available dataset pairing
natural language prompts with correct Aptly code. Without ground truth examples,
traditional supervised evaluation is not possible.

• No automatic execution testing: Unlike conventional code generation tasks, there is
no straightforward way to run unit tests or check execution outputs. App Inventor apps
must be deployed inside the platform to test functionality, making scalable automated
evaluation infeasible.

• Partial correctness: Even when generated code is not fully correct, it may still achieve
parts of the intended functionality. Standard exact-match metrics fail to capture degrees
of partial correctness or semantic similarity between generated and reference programs.

Given these limitations, a custom evaluation framework is necessary to meaningfully
assess Aptly’s performance. In response, we developed a dedicated evaluation pipeline that
addresses each of these challenges:

• Dataset creation (section 4.1: We constructed a benchmark dataset consisting of
natural language prompts paired with carefully designed reference Aptly code, addressing
the lack of ground truth data.

39

• Evaluation metric adaptation (section 4.2: We surveyed evaluation techniques from
the broader natural language-to-code literature, including HumanEval and CodeBLEU,
and selected CodeBLEU as the basis for our framework. CodeBLEU’s structure, syntax,
and semantic-aware components are well-suited for capturing partial correctness.

• Tree-sitter parser for Aptly (section 4.3: To enable syntactic and structural analysis,
we implemented a custom Tree-sitter parser for the Aptly language. This parser
tokenizes and produces abstract syntax trees (ASTs) from Aptly code, a crucial step
for metric computation.

• Tailored evaluation pipeline (section 4.4: Finally, we combined the dataset, parser,
and adapted metrics into a full evaluation pipeline capable of assessing Aptly outputs
both syntactically and semantically.

This evaluation framework lays the groundwork for systematically measuring Aptly’s
strengths, identifying failure modes, and guiding future improvements in offline natural
language-to-app generation.

4.1 Dataset Construction

4.1.1 Dataset Overview

The datasets collected for this thesis consist of paired natural language descriptions and
Aptly code snippets. Aptly is a domain-specific language designed to express the component
structure and event logic of MIT App Inventor apps in a readable and structured format.
Each data point is a (description, code) pair: the description conveys the intended app
behavior in plain English, and the code provides an abstract yet executable specification that
captures the app’s logic and layout.

For instance, the following example illustrates a “Magic 8 Ball” app that speaks a random
answer aloud when the user shakes the device and asks a question:

“Create a magic 8 ball app with a picture of the magic 8 ball that gives the user
an answer that a real 8 ball would give when they ask the app a question out loud
and shake the device.”

1 START
2 Screen1 = Screen ()
3 Magic8BallImage = Image(Screen1 , Picture = "magic8ball.png")
4 QuestionLabel = Label(Screen1 , Text = "Ask the magic 8 ball a question , then

shake the phone")
5 AnswerLabel = Label(Screen1 , Text = "")
6 TextToSpeech1 = TextToSpeech(Screen1)
7 AccelerometerSensor1 = AccelerometerSensor(Screen1)
8

9 initialize PredictionsList = ["Outlook certain", "Yes", "No way", "It is
certain",

40

10 "Not likely", "Reply hazy", "Maybe", "Without a
doubt"]

11

12 when AccelerometerSensor1.Shaking ():
13 set AnswerLabel.Text = lists_pick_random_item(global PredictionsList)
14 call TextToSpeech1.Speak(AnswerLabel.Text)
15 STOP

Listing 4.1: Aptly code for the Magic 8 Ball app

This structure supports the training and evaluation of models capable of generating
full Aptly programs from natural language input, facilitating automatic app creation and
providing a foundation for studies in natural language programming.

4.1.2 Datasets

To evaluate the Aptly code generation system, we curated four distinct datasets representing
a range of difficulty levels, use cases, and origins. The first dataset, repo_examples (164
files), consists of simple, curated examples originally used within the Aptly project to support
few-shot prompting. These examples are concise, typically focusing on a narrow component
of MIT App Inventor, and were designed to maximize coverage across the Aptly syntax space.
We split this dataset using an 85%/15% train/test split. To avoid data leakage, we explicitly
removed the 15% reserved for testing from all few-shot prompt contexts and training data.
The examples range in length from 5 to 64 lines of code, with a mean of 16.57 lines and a
standard deviation of 10.87.

The second dataset, tutorial_examples (18 files), consists of comprehensive educational
examples used to teach MIT App Inventor to beginners. These include more complex projects
such as making a drawing canvas or building an AI chatbots. Owing to their complexity
and the small total sample size, we adopted a 60%/40% train/test split. These examples are
longer, with line counts ranging from 24 to 106, a mean of 51.83, and a standard deviation of
26.14.

The third dataset, manual_labeled (45 files), contains examples created by real
(anonymized) users of App Inventor. We manually labeled these files with natural lan-
guage descriptions to support supervised learning evaluation. These examples were selected
to capture a diverse range of app functionalities and structural completeness. Some ex-
amples of descriptions of the apps include: A note taking apps that lets users write and
save notes, read old notes, and make new notes and A music player with buttons to play
different genres like metal, rap, and adrenaline-pumping tracks. Like the tutorial examples,
we used a 60%/40% train/test split. This dataset has a wider range in complexity, with file
lengths ranging from 9 to 147 lines, a mean of 48.69, and a standard deviation of 27.12. The
spreadsheet with the dataset info can be found here

After individual processing, we aggregated these 3 training sets into a unified training set,
and all testing sets into a single held-out evaluation set. This structure was chosen to allow
models to generalize across varying complexities and content types while maintaining a clear
and fair separation between seen and unseen data.

The fourth dataset, ai_labeled (2045 files), was constructed from anonymized, complete
app examples created by real users. To ensure diversity and reduce redundancy, we filtered the

41

https://docs.google.com/spreadsheets/d/1-5v6Xjt63XieR2schtKVefx2Oov3CIPstEin7h9AfXQ/edit?gid=574432908#gid=574432908

raw examples by computing pairwise cosine similarities between their embeddings, generated
using a pre-trained CodeBERT model [39]. Specifically, snippets with a similarity score
greater than 0.99 were considered redundant and removed. After filtering, we generated
natural language descriptions for the remaining examples using few-shot prompting with
OpenAI models, thereby creating new (description, code) pairs. Compared to the manually
curated datasets, ai_labeled is substantially larger, with code examples varying from 3
to 174 lines, a mean length of 12.28 lines, and a standard deviation of 8.45. We randomly
partitioned this dataset into five equal parts for use in 5-fold cross-validation.

Table 4.1: Line Count Statistics for Each Dataset

Dataset Mean Std Min 25% 50% (Median) 75% Max

repo_examples (164) 16.57 10.87 5 9.75 13.00 21.00 64
tutorial_examples (18) 51.83 26.14 24 32.50 43.00 60.75 106
manual_labeled (45) 48.69 27.12 9 34.00 45.00 55.00 147
ai_labeled (2045) 12.28 8.45 3 7.00 11.00 16.00 174

4.2 Metric Selection and Adaptation

Unlike standard natural language generation tasks, code generation (as in the case with
Aptly) imposes stricter structural, syntactic, and semantic constraints. A code snippet may
be superficially similar to a reference output yet fail to execute correctly, or conversely,
may differ in wording but still correctly implement the intended functionality. As a result,
traditional natural language evaluation metrics—such as BLEU, ROUGE, or METEOR—are
insufficient for assessing code quality.

In evaluating Aptly, we needed a metric that could capture not just token-level simi-
larity, but also structural and functional correctness. To guide our decision, we conducted
a preliminary literature review of natural language to code benchmarks and evaluation
methodologies (as detailed in section 2.5). This survey helped us identify key requirements for
code evaluation: sensitivity to syntax and structure, robustness to minor surface variations,
and, where possible, reflection of functional correctness.

4.2.1 Preliminary Experimentation: HumanEval and CodeBLEU

To better understand the behavior of available metrics, we conducted preliminary experiments
using out-of-box large language models and standard code generation datasets. Specifically,
we experimented with: OpenAI GPT-3.5, OpenAI GPT-4, Gemini Pro, Gemini Flash, Meta
Llama3 8B Instruct, Anthropic Claude 3.5, Anthropic Claude Instant.

We evaluated model outputs on existing Python datasets, including CONCODE [40] and
MBPP (Multi-lingual Python Programming Benchmark) [41]. Our goal was to investigate the
strengths and limitations of different evaluation strategies—specifically surface-form matching
(e.g., BLEU score), structural matching (e.g., CodeBLEU), and executable correctness (e.g.,
HumanEval).

42

HumanEval Metrics

HumanEval [29] is a benchmark designed for code generation evaluation through execution-
based tests. Each problem consists of a Python function signature and a hidden set of
test cases. Generated code is assessed based on its ability to pass these tests. HumanEval
primarily reports the pass@k metric, which measures the probability that at least one of k
generated samples passes all test cases.

For example, if a model generates five candidate functions for a prompt like “reverse a
linked list,” pass@5 measures whether any one of those five successfully reverse the list under
hidden tests.

Pros: The benefits are that this captures true functional correctness, and is robust to
stylistic variations.

Cons: The drawbacks are that it requires an executable environment, which Aptly lacks
outside of App Inventor. The utility also depends heavily on the quality and coverage of test
cases, making it infeasible for Aptly without significant infrastructure development (discussed
in Future Work, Chapter 6).

Thus, while HumanEval metrics are ideal in theory, they are impractical for current Aptly
evaluation.

CodeBLEU Metrics

CodeBLEU [30] extends the traditional BLEU score by incorporating signals crucial for code:

• Weighted n-gram match: Like BLEU, but adjusts weights for code-specific tokens.

• Syntax match: Compares abstract syntax trees (ASTs) for structural correctness.

• Data-flow match: Considers variable and data dependencies in the code.

• Semantic match: Optionally considers equivalence transformations (though rarely
feasible without execution).

To illustrate the advantage over plain BLEU, consider the following example:

• Reference Code:
1 def find_Volume(l, b, h):
2 return ((l * b * h) / 2)

• Candidate Code:
1 def triangular_prism_volume(base , height , depth):
2 return (base * height * depth) / 2

The corresponding evaluation results are:

• BLEU Score: 0.0255

• CodeBLEU Score: 0.3892

43

– N-gram Match Score: 0.0255

– Weighted N-gram Match Score: 0.0312

– Syntax Match Score: 0.5

– Dataflow Match Score: 1.0

This example highlights that although the BLEU score is very low due to minimal n-gram
overlap (e.g., different variable and function names), CodeBLEU assigns a significantly higher
score by recognizing structural and semantic similarities. Specifically, the syntax match
(0.5) and perfect dataflow match (1.0) demonstrate that the candidate code preserves the
intended functionality of the reference despite surface-level differences. Thus, CodeBLEU
better reflects functional correctness, while BLEU remains sensitive only to superficial token
matches.

Pros: CodeBLEU captures structural and syntactic similarity, and is more tolerant of
stylistic variation than BLEU, but does not require executable outputs.

Cons: : However, CodeBLEU does not guarantee functional correctness, and is still
surface-level in cases of deep semantic divergence.

Through these experiments, we concluded that CodeBLEU provides the best balance
between feasibility and informativeness for Aptly evaluation.

4.2.2 Adapting CodeBLEU for Aptly

While CodeBLEU provided a strong foundation, it was not directly applicable to Aptly.
Aptly’s Python-inspired syntax, customized for block-based code generation, does not align
with standard programming language grammars. To address this:

• We implemented a custom Tree-sitter parser for Aptly, capable of producing struc-
tured ASTs.

• We modified CodeBLEU’s syntax matching and n-gram tokenization modules to align
with Aptly’s conventions.

• We recalibrated the weights across CodeBLEU’s sub-metrics to emphasize structural
matching and de-emphasize surface token matches.

Additionally, recognizing the importance of program loadability in the absence of execution
testing, we integrated parsing success into our evaluation pipeline: only programs that
successfully parse into valid App Inventor projects without errors are considered viable
outputs.

In summary, we chose to adapt CodeBLEU rather than rely on out-of-box metrics because
of the considerable stylistic variability in Aptly-generated code. Small differences such as
screen names, variable naming conventions, and minor block variations could otherwise
significantly distort evaluation. By tightly integrating Aptly’s syntax into CodeBLEU, we
established a strong foundation for a rigorous and extensible evaluation framework, upon
which future executable or functionality-based extensions can be layered.

44

Table 4.2: Comparison of Evaluation Metrics for Code Generation

Metric BLEU HumanEval
(pass@k)

CodeBLEU

Type Surface-level
n-gram match

Execution-based
correctness

Structural and
semantic match

Execution Required No Yes No
Captures Syntax No Indirectly Yes (via AST

match)
Captures Semantics No Yes (via test cases) Partially (via

data-flow match)
Variable Renaming No Yes Yes
Language Agnostic Yes Limited (primarily

Python)
Requires
language-specific
parsers

Advantages Simple to compute;
widely used

Measures actual
functionality

Considers structure
and semantics

Limitations Ignores code
structure and
meaning

Needs executable
environment

Requires AST and
data-flow analysis

4.3 Tree-sitter Parser for Aptly

Evaluating Aptly-generated code at a structural level required more than token comparisons –
we needed a way to parse Aptly code into structured representations, such as abstract syntax
trees (ASTs). While Aptly includes its own parser for converting natural language into App
Inventor code, it lacks the capabilities provided by Tree-sitter, such as incremental parsing
and integration with tools like CodeBLEU that rely on detailed syntax trees to evluate syntax
and dataflow matches.

To address this, we developed a custom Tree-sitter parser for Aptly. Tree-sitter [42]
is an open-source incremental parsing library that generates parsers based on user-defined
grammars. The process of developing a Tree-sitter grammar for Aptly involved:

• Defining the Grammar: We wrote a formal grammar specification for Aptly in
grammar.js, covering core constructs such as screen declarations, UI component initial-
ization, property settings, and event handler definitions.

• Generating the Parser: Utilizing Tree-sitter’s CLI tools, we generated C-based
parsing code from the grammar file.

• Testing the Parser: We built and tested the parser by running it against example
Aptly code snippets to ensure accurate syntax tree generation.

The full parser code is open-sourced at https://github.com/joyce-yuan/tree-sitter-aptly.
For instance, given the following Aptly code:

45

https://github.com/joyce-yuan/tree-sitter-aptly

1 Screen1 = Screen ()
2 Label1 = Label(Screen1 , text="Hello , World!")
3 Button1 = Button(Screen1 , text="Click Me")
4

5 when Button1.Click():
6 call Notifier1.ShowMessageDialog("Hello , World!", "Greeting", "OK")

the Tree-sitter parser produces the following syntax tree:
The resulting syntax tree is:

program
|---- screen_block
| |---- component_decl
| | |---- identifier
| | \---- identifier
| |---- component_decl
| | |---- identifier
| | |---- identifier
| | \---- component_args
| | \---- designer_properties
| | \---- designer_property
| | |---- identifier
| | \---- designer_value
| | \---- string
|---- component_decl
| |---- identifier
| |---- identifier
| \---- component_args
| \---- designer_properties
| \---- designer_property
| |---- identifier
| \---- designer_value
| \---- string
| |---- identifier
| |---- identifier
| \---- commented_statement
| \---- statement
| \---- method_call
| |---- identifier
| |---- identifier
| \---- argvalues
| |---- expression
| |---- expression
| \---- expression

This parser forms the backbone of the structural analysis in our evaluation framework,
enabling syntax tree comparisons and facilitating customized CodeBLEU scoring.

4.4 Custom CodeBLEU-Based Evaluation Pipeline

Building on the Aptly Tree-sitter parser, we constructed a custom CodeBLEU-based evaluation
pipeline tailored to Aptly’s syntax and semantics. The goal was to integrate parsing, weighted

46

n-gram matching, and structural analysis into a unified framework for evaluating natural
language-to-Aptly code generation.

To implement the full evaluation framework, we made several modifications based on the
original CodeBLEU infrastructure [43]:

• Building the Aptly Parser: First, we generated a compiled shared library version of
our Tree-sitter Aptly parser. This involved running tree-sitter generate to produce
parser C files, compiling these into a shared object file (aptly.so), and placing the
compiled parser into the CodeBLEU evaluation directory. This step ensured that the
CodeBLEU scripts could dynamically load and parse Aptly code during evaluation, as
described previously in Section 4.3.

• Defining aptly_dfg.py: We created a module, aptly_dfg.py, to extract data flow
graphs (DFGs) from Aptly code. A DFG captures the flow of variables and values
through a program—mapping how data is defined, used, and passed across different
parts of the code. Writing aptly_dfg.py involved walking the Aptly syntax trees
produced by Tree-sitter, identifying variable assignments and usages, and constructing
corresponding DFG edges. This enabled CodeBLEU’s dataflow matching component to
operate correctly for Aptly.

• Providing aptly.txt: We defined a file aptly.txt listing Aptly-specific keywords and
operators. This file was used to compute weighted n-gram matching, giving greater
importance to critical tokens like Screen, Label, Button, and when.

Once the infrastructure was set up, the evaluation pipeline could be run using a command
such as:

1 python calc_code_bleu.py \
2 --refs path/to/reference.txt \
3 --hyp path/to/hypothesis.txt \
4 --lang aptly \

where reference.txt and hypothesis.txt contain one Aptly program per line, corre-
sponding to the ground truth and model-generated outputs, respectively.

An example output from the evaluation pipeline (example placeholder):
As an illustration, consider the following evaluation:

• reference.txt:
1 Screen1 = Screen ()
2 Label1 = Label(Screen1 , text="Hello , World!")
3 Button1 = Button(Screen1 , text="Click Me")
4

5 when Button1.Click():
6 call Notifier1.ShowMessageDialog("Hello , World!", "Greeting", "OK")

• hypothesis.txt:

47

1 Screen1 = Screen ()
2 Label1 = Label(Screen1 , text="Hello!")
3 Button1 = Button(Screen1 , text="Press Me")
4

5 when Button1.Click():
6 call Notifier1.ShowMessageDialog("Hello!", "Message", "OK")

• Evaluation Results:

– N-gram Match Score: 0.4301

– Weighted N-gram Match Score: 0.4410

– Syntax Match Score: 1.0

– Dataflow Match Score: 1.0

– Overall CodeBLEU Score: 0.7178

The example above shows that, with a single evaluation command, we can now assess
Aptly-generated code across multiple dimensions—including syntactic validity, structural
alignment, and dataflow consistency—without requiring manual inspection or executable
test environments. This addresses key limitations we previously identified with traditional
evaluation metrics and enables scalable, reproducible evaluation of offline natural language-
to-code generation.

By adapting CodeBLEU for Aptly and integrating our custom parser and DFG tool, we
established a reliable and extensible evaluation framework for measuring the quality of Aptly
code generation outputs, forming the basis of the experiments and benchmarks presented in
this thesis.

48

Chapter 5

Results and Analysis

This section takes a deep dive into how well Aptly’s code generation performs—both with
models we use today and with newer, fine-tuned versions designed to run fully offline. These
experiments directly address the two motivating questions from Section 1.3: (1) Can we
make Aptly work effectively on mobile devices without an internet connection? and (2) How
can we reliably evaluate the quality of the code it generates?

To explore these questions, we evaluate Aptly’s performance from multiple angles. First,
we use our custom evaluation framework (introduced in Section 4.2.2)—which combines a
Tree-sitter parser for Aptly and a modified version of CodeBLEU—to benchmark out-of-box
large language models such as GPT-4, Claude, and Gemini. Next, we evaluate the robustness
of our fine-tuning pipeline via a 5-fold cross-validation study on a fine-tuned LLaMA model.
This controlled analysis helps establish whether the model generalizes consistently across
data splits and if improvements in parseability and structure are systematic. Finally, we
compare a range of fine-tuned models—including on-device deployments—against commercial
APIs to assess their effectiveness.

[Placeholder: This is where we’ll summarize key takeaways—like the best-performing model
setups, how much improvement fine-tuning achieved, and lessons learned from failure cases
or parsing issues.]

The rest of this section thoroughly explores the results through a multi-perspective
evaluation:

• Section 5.1: Evaluation of Out-of-Box Models. We benchmark several widely-
used models across different prompting methods and highlight their strengths and
weaknesses when applied to Aptly.

• Section 5.2: Cross-Validation Evaluation of Fine-tuned LLaMA. We assess
whether fine-tuning on Aptly-specific data leads to consistent performance and structural
improvements across multiple data splits.

• Section 5.3: Evaluation of Fine-Tuned Models. We show how models customized
with Aptly-specific training data—especially those optimized for mobile use—perform
relative to commercial APIs.

• Section 5.4: Preliminary User Studies and Additional Experiments. We

49

include some exploratory experiments and early user study results to round out our
understanding of Aptly’s capabilities and usability.

By the end of this section, we aim to:

• Understand how well Aptly currently works in generating valid and useful code;

• Identify which models and prompting strategies give the best results;

• See how much of a difference fine-tuning makes, especially for offline use on edge devices.

5.1 Evaluation of Out-of-Box Models

To understand the baseline performance of Aptly’s current generation pipeline, we utilize our
newly developed evaluation framework (Section 4) to evaluate a variety of out-of-box LLMs
that are used in the current pipeline. Previously, Aptly lacked a reliable metric given the
tool’s non-pulic syntax, but our developed Aptly-specific CodeBLEU variant, combined with
parse success tracking via our Tree-sitter parser, enables us to rigorously benchmark model
performance across both syntactic validity and semantic fidelity.

5.1.1 Models and Prompting Methods

We evaluate a representative set of state-of-the-art LLMs from three major providers:

• OpenAI: gpt-3.5-turbo, gpt-4

• Anthropic / Amazon Bedrock: claude-3-sonnet, claude-3.5-sonnet, meta.llama3-
70b-instruct

• Google Gemini: gemini-1.5-pro-latest

Each model is tested using three distinct prompting strategies, reflecting the different
ways Aptly has historically been used to generate code:

1. Examples (Few-Shot Prompting): We retrieve a small set of similar natural
language–code examples using embedding-based similarity search. These examples are
prepended to the prompt to guide the model’s output.

2. Rules (Rules-Based Prompting): We include a formal definition of Aptly’s grammar
as a system message, instructing the model to follow the rules when generating code. A
sample excerpt is shown below (full system text can be found in Appendix B.1):� �
Aptly is a programming language used to describe programs for MIT App Inventor.
Aptly can be described by the following grammar:

program = screen_block code_block*
screen_block = component_decl* ’\n’
component_decl = identifier ’=’ identifier ’(’ component_args? ’)’
component_args = parent_component | designer_properties | ...� �

Listing 5.1: Excerpt from Aptly System Prompt

50

3. Examples + Rules (Hybrid Prompting): We combine both strategies, providing
grammar rules in the system message and similar examples in the user prompt. This
hybrid approach reflects the current production setup used in Aptly’s deployed version.

These strategies represent three different tradeoffs: examples alone provide grounded
reference points but little structural guidance; rules alone emphasize correctness but may
lack semantic nuance; the combined approach aims to balance both.

5.1.2 Evaluation Setup

For each model-prompting pair, we evaluate on a held-out test set of [insert number] natural
language prompts and their corresponding Aptly programs. We record:

• CodeBLEU Score: As adapted in Section 4.2.2, this measures structural and semantic
correctness of the generated Aptly code.

• Parsing Success Rate: Whether the generated code parses successfully into a valid
.aia file that MIT App Inventor can open and render.

These dual metrics give us a holistic view: CodeBLEU captures semantic intent, while
parse success measures syntactic correctness and viability in deployment.

5.1.3 Results Summary

In particular, we are interested in identifying (1) which models generate the most accurate
and syntactically correct Aptly code, and (2) which prompting strategy yields the best results.

Figure 5.1 are the normalized CodeBLEU scores across evaluated across a held out test
set of 25 examples, and whether or not the code parsed.

51

Figure 5.1: CodeBLEU Scores Across Out-of-Box Models and Prompting Strategies

Label Z-score
gpt-3.5-turbo | examples 1.4287
gpt-3.5-turbo | examples_rules 1.3163
gpt-4 | examples 1.2017
gpt-4 | examples_rules 1.0040
llama3-70b | examples 0.5829
llama3-70b | examples_rules 0.5765
claude-3.5 | examples 0.1025
gemini-1.5-pro | examples_rules 0.0679
claude-3 | examples_rules -0.2041
claude-3.5 | examples_rules -0.2623
gpt-4 | rules -0.8509
claude-3 | rules -0.8656
gemini-1.5-pro | rules -0.8696
claude-3.5 | rules -0.8745
llama3-70b | rules -0.8849
gpt-3.5-turbo | rules -0.9064

Table 5.1: Normalized codebleu score for each model and prompting strategy

CodeBLEU Scores:

• GPT-3.5-turbo consistently outperforms all other models in terms of normalized

52

CodeBLEU score, across both example-only and hybrid (examples + rules) prompting
strategies.

• Providing grammar rules in the prompt sometimes reduces performance, particularly
when combined with examples—likely due to exceeding context window limits or
introducing ambiguity.

• Across all models, rule-only prompts perform the worst, indicating that current
LLMs struggle to generate semantically coherent Aptly code when given only formal
specifications without examples.

Figure 5.2: Parsing Success Rate Across Out-of-Box Models and Prompting Strategies

Parse Success Rates:

• GPT-3.5-turbo also achieves the highest parse success rate, producing syntactically
valid Aptly code in 24 out of 25 cases.

• Gemini 1.5 Pro ranks second in parsing success, despite being less frequently used in
our system—suggesting it may deserve more consideration going forward.

• Unlike with CodeBLEU, providing grammar rules generally helps parsing,
particularly in the hybrid (examples + rules) setting, reinforcing the idea that rules
improve syntactic structure even if they do not aid semantic accuracy.

Conclusion. Taken together, these results highlight GPT-3.5-turbo as the strongest overall
performer across both semantic and syntactic metrics with this smaller test set. Interestingly,
while grammar rules alone are insufficient for generating meaningful code, they appear to
help models produce parseable output when combined with examples. These findings also
surface promising alternatives—such as Gemini 1.5 Pro—that may be underutilized in Aptly’s
current pipeline and merit deeper exploration in future iterations.

53

Discussion and Future Work

Our initial results indicate that gpt-3.5 turbo combined with both examples and rules
offers the best tradeoff between syntactic validity and semantic correctness. However, parse
failures remain non-trivial, motivating future directions including:

• Expanding the example pool for few-shot prompting

• Experimenting with different ways and lengths of prompting.

• Leveraging reinforcement learning to optimize generation toward syntactic validity
based on Aptly grammar

5.2 Cross-Validation Evaluation of Finetuned Llama

To assess whether fine-tuning leads to consistent improvements in local token-level code
generation, we conducted 5-fold cross-validation using the ai_labeled dataset, which contains
2,045 natural language-to-Aptly examples. The dataset was randomly partitioned into five
folds, ensuring each fold served once as a test set while the others were used for training.
For each fold, we compared the weighted n-gram match component of CodeBLEU between a
fine-tuned model and its corresponding baseline (out-of-box) model on the same test data.

We chose weighted n-gram match as our primary cross-validation metric to isolate the
effects of fine-tuning from potential implementation variability in the new Tree-sitter Aptly
parser, avoiding conflation with correctness-sensitive metrics like syntax or dataflow match. In
addition, we evaluated parsing success across folds as a proxy for syntactic validity, reflecting
whether generated Aptly code could be structurally parsed into valid App Inventor projects.

5.2.1 Fine-Tuning Robustness Across Folds

To evaluate the consistency and stability of our fine-tuning process, we analyzed the perfor-
mance of the five fine-tuned models—one trained on each fold of the 5-fold cross-validation
split—using the weighted n-gram match score from CodeBLEU and the number of parseable
outputs. These metrics help assess how well each model generalizes to unseen data and
whether the fine-tuning procedure exhibits convergence regardless of fold composition.

54

Figure 5.3: Weighted n-gram match (mean ± 95% CI) for each fine-tuned model across the
five folds.

Figure 5.3 shows the weighted n-gram match scores for the five fine-tuned models, along
with their 95% confidence intervals. The scores across folds are relatively close in magnitude,
with all values ranging from 0.181 to 0.198 and overlapping confidence intervals. This suggests
that the models converge to similar performance levels across the different folds, reinforcing
our claim that the fine-tuning process is robust and not overly sensitive to a specific partition
of the data.

Table 5.2: Weighted n-gram match and parseable output count for each fine-tuned model
(out of 409 examples).

Fold Weighted N-gram Match 95% CI Parseable Outputs
Fold-1 0.198 ± 0.0185 67
Fold-2 0.181 ± 0.0181 74
Fold-3 0.195 ± 0.0187 67
Fold-4 0.197 ± 0.0182 61
Fold-5 0.195 ± 0.0191 68

Additionally, we measured the number of parseable completions out of 409 total examples
per fold. While there is mild variation, the parseability rates are generally consistent, ranging
from 61 to 74 completions across folds. These counts are summarized in Table 5.2.

Conclusion: Together, these results indicate that fine-tuning yields reliable training
behavior and stable test-time outcomes across data splits.

55

5.2.2 Fine-tuned vs Baseline Performance Comparison Across Folds

To evaluate whether fine-tuning meaningfully improves model performance compared to
out-of-box baselines, we compared each fine-tuned model with its respective baseline across all
five folds, using both the weighted n-gram match metric and the number of parseable outputs.
These comparisons were paired by test set and evaluated using both per-fold differences and
a paired t-test for statistical significance.

Weighted N-gram Match. Figure 5.4 shows the weighted n-gram match scores for all 10
models (5 fine-tuned and 5 baselines), grouped by fold. While fold-level differences exist, the
scores are relatively similar across models, and no consistent trend favoring fine-tuned models
emerges. As summarized in Table 5.3, the average difference across folds was −0.0007±0.0025,
slightly favoring baselines. A paired t-test confirms this difference is not statistically significant
(t = −0.595, p = 0.584).

Figure 5.4: Weighted n-gram match (mean ± 95% CI) for fine-tuned and baseline models
across all folds.

Table 5.3: Weighted n-gram match comparison per fold.

Fold Baseline Fine-tuned (Fine - Base)
1 0.1974 0.1976 +0.0002
2 0.1811 0.1813 +0.0002
3 0.1955 0.1945 -0.0010
4 0.1947 0.1969 +0.0022
5 0.1998 0.1945 -0.0053

Mean ± Std −0.0007± 0.0025

56

Figure 5.5: Per-fold weighted n-gram match differences (fine-tuned minus baseline), with
t-test results.

Parsed Output Counts. Parseability serves as a proxy for syntactic correctness, reflecting
whether model-generated Aptly code could be successfully parsed into a valid App Inventor
project. Table 5.4 shows the number of parseable completions per model (out of 409
examples). In 4 out of 5 folds, the fine-tuned model had more parseable outputs than its
baseline, with the largest gain seen in Fold 2 (+8 completions).

A paired t-test across folds yielded a mean improvement of +3.6± 4.50 parsed outputs,
which again was not statistically significant (t = 1.60, p = 0.185). Still, the consistent
improvement in 4 of 5 folds suggests a promising trend: fine-tuned models may be more likely
to generate well-formed code, even if the effect is not yet conclusive.

Table 5.4: Parseable output comparison per fold.

Fold Baseline Parsed Fine-tuned Parsed (Fine - Base)
1 60 67 +7
2 66 74 +8
3 61 67 +6
4 65 61 -4
5 67 68 +1

Mean ± Std +3.6± 4.50

57

Figure 5.6: Per-fold parseability differences (fine-tuned minus baseline), with t-test results.

Summary. While fine-tuned models do not significantly outperform their baselines in either
weighted n-gram match or parseability under statistical testing, we observe early signs of
structural improvements, particularly in parsing success. The consistent parseability gains
across most folds suggest that fine-tuning may help reinforce well-formed output, even if
token-level surface metrics remain flat. These insights point to the value of incorporating
structural metrics and downstream task-based evaluation in future iterations.

5.3 Evaluation of Fine-Tuned Models

Beyond out-of-box usage, we explore how fine-tuning affects model performance in both
cloud and offline settings. In this section, we evaluate the performance of fine-tuned models
relative to commercial API baselines using two key metrics: normalized CodeBLEU scores and
parseable output counts. This comparison includes fine-tuned GPT-4.1 and GPT-3.5 variants,
as well as baseline models like GPT-4, GPT-3.5-turbo, and locally deployable versions of
LLaMA.

Fine-Tuning Cloud-Based Models

We fine-tuned an OpenAI GPT model using the company’s fine-tuning API with the curated
train dataset, and the ai_labeled dataset (references in Section 4.1). The dataset includes
hundreds of natural language-app pairs representing real use cases and diverse app types.
Figure 5.7 shows the loss curve of an example of the finetuned model, indicating that the
model converged after around 300 examples.

58

Figure 5.7: Train loss and accuracy curve of finetuning job for OpenAI

The final model can be referenced by ID ft:gpt-4.1-2025-04-14:mit-app-inventor::BU3BkNlZ.

Fine-Tuning and Deploying Local LLaMA with QLoRA

We also fine-tuned a local version of Meta’s LLaMA 3B model using QLoRA, a lightweight
method for scalable adaptation of large models. The training data was the same as used for
OpenAI fine-tuning.

Model Details: Base model: LLaMA 3B | Training method: QLoRA | Deployment framework:
MLC LLM

Weighted N-gram Match / CodeBLEU (Semantic Fidelity): As shown in Fig-
ure 5.8, the fine-tuned GPT-4.1 model trained on the examples dataset outperforms all
baselines, achieving the highest average normalized CodeBLEU score of 0.36± 0.12. Both
GPT-4 baselines also perform well, with scores of 0.22 and 0.20 respectively, while GPT-3.5
and GPT-3.5-turbo perform more modestly. LLaMA 3B and QLoRA-finetuned LLaMA
perform similarily in terms of CodeBLEU score.

59

Figure 5.8: Normalized CodeBLEU (z-score) across model and prompting configurations
(mean ± 95% CI).

• Finetuned GPT-4.1 with example prompting achieves the best overall se-
mantic performance, outperforming all other models with the highest normalized
weighted n-gram match score and relatively tight confidence intervals.

• Fine-tuning led to semantic gains in OpenAI models, but not in LLaMA,
reinforcing that OpenAI’s fine-tuning pipeline effectively adapts models to domain-
specific tasks, while QLoRA and LLaMA variants failed to show similar improvements
in semantic fidelity.

• Surprisingly, fine-tuned GPT-4.1 with grammar rule prompting underper-
formed relative to the base model, suggesting that injecting handcrafted grammar
examples may hinder learning in large-context models—an unexpected result that
merits further investigation.

Parse Success Rate (Syntactic Validity): Parseability reflects the syntactic validity
of generated Aptly programs. Figure 5.9 and Table 5.5 shows the number of parseable
completions (out of 409) for each model. Again, the fine-tuned GPT-4.1 examples model
leads with 331 parsed outputs—over 80% parseability—followed by GPT-4 baselines at 321
and 311. This is consistent with CodeBLEU trends and further validates the robustness of
the fine-tuned GPT-4.1 model. However, some models show divergence between semantic
fidelity and syntax correctness—for example, out of box models with grammar rules improves
parsing but not CodeBLEU.

60

Figure 5.9: Parseable completions (out of 409) per model and prompting setup.

Table 5.5: Parseable output counts (out of 409) per model.

Model | Prompting Parseable Completions
finetune-gpt-4.1-examples | examples 331
gpt-4 | examples_rules 321
gpt-4 | examples 311
finetune-gpt-4.1-rules | examples_rules 286
finetune-gpt-3.5 | examples 279
gpt-3.5-turbo | examples_rules 240
gpt-3.5-turbo | examples 215
qlora-llama | examples 67
llama3-3b | examples 60

• Finetuned GPT-4.1 also leads in parsing success, generating valid Aptly code
in over 80% of cases, substantially outperforming both the base GPT-4 and all other
models.

• Grammar rules appeared to help parseability in out-of-box GPT models, but
this trend did not carry over to fine-tuned variants, possibly due to conflicting inductive
biases introduced during training.

• QLoRA-finetuned LLaMA improves slightly in parseability over the base
model, indicating that even though semantic accuracy remains low, fine-tuning can
help align syntax—though still far behind OpenAI’s results.

61

• This trend reinforces the observation from Section 5.1 that LLMs often struggle
to follow Aptly’s grammar rules precisely, even after domain-specific train-
ing—suggesting an opportunity for reinforcement learning or constrained decoding in
future work.

Summary These results confirm that fine-tuning can yield significant gains in code genera-
tion performance. However, syntactic correctness remains a challenge. Finetuned GPT-4.1
emerges as the most capable model across both dimensions, while the persistent parsing
issues in smaller models point to potential benefits from integrating rule-following incentives
during training or postprocessing. Grammar rule-based prompting can sometimes improve
parseability but may interfere with semantic fidelity during fine-tuning. However, future work
may investigate distillation or adapter-based strategies to retain these benefits in smaller,
locally deployable models.

5.4 Preliminary User Studies and Additional Experiments

In addition to our core evaluations, we conducted supplementary experiments and early-
stage user studies to better understand Aptly’s usability, effectiveness, and technical fea-
sibility—both from a system-level and user-centered perspective. These efforts serve to
contextualize our fine-tuning and deployment results, and identify paths for improvement in
real-world use.

5.4.1 Preliminary User Studies

To assess Aptly’s usability and interpretability, we conducted a series of early-stage user stud-
ies with MIT undergraduate students (n=5). The full test plan, including task prompts and
protocols, is available at https://docs.google.com/document/d/1JBbG-nVy985twt9p0BLko_
i6AEPY202VPW1CK0N5GdM/edit?usp=sharing, and study materials, surveys, and record-
ings are archived at https://drive.google.com/drive/folders/1ilRmofaA4AOYEs-SPIsq7MEJ4_
FhHPSo?usp=drive_link.

Each participant was asked to:

1. Describe an app they wanted to build using natural language,

2. Inspect and debug the generated Aptly code blocks,

3. Provide feedback on output quality, prompt design, and their expectations.

Key findings included:

• Visual mapping clarity: Users appreciated the transparency between their input and
the resulting code blocks.

• Syntax friction: Several users were confused by certain tokens in the Aptly-specific
syntax and struggled to debug errors without deeper documentation

62

https://docs.google.com/document/d/1JBbG-nVy985twt9p0BLko_i6AEPY202VPW1CK0N5GdM/edit?usp=sharing
https://docs.google.com/document/d/1JBbG-nVy985twt9p0BLko_i6AEPY202VPW1CK0N5GdM/edit?usp=sharing
https://drive.google.com/drive/folders/1ilRmofaA4AOYEs-SPIsq7MEJ4_FhHPSo?usp=drive_link
https://drive.google.com/drive/folders/1ilRmofaA4AOYEs-SPIsq7MEJ4_FhHPSo?usp=drive_link

• Prompt expectations: Participants often expected a more "fully fleshed out" app and
were surprised when additional prompt specificity was required

These observations motivate a need for improved onboarding tools and scaffolding, and
suggest future work on longitudinal usability studies. While qualitative, this feedback confirms
Aptly’s potential for real-world deployment and highlights directions for interface refinement
and future user research.

5.4.2 Technical Supplementary Experiments

Python Baseline Experiments

To calibrate CodeBLEU’s behavior, we evaluated it on a set of Python programs and
HumanEval tasks. These experiments helped validate the feasibility of adapting CodeBLEU
for Aptly-specific evaluation and provide grounding for the metric’s interpretation. See
Appendix A.2 for charts and further details.

Model Pruning Trials

We experimented with sparsity-aware pruning on our fine-tuned LLaMA model to reduce
memory footprint and inference latency. While compression gains were significant, initial
results showed notable accuracy degradation at higher sparsity levels. Further study is
required to balance performance and efficiency in future deployments. See Appendix A.3 for
configuration and preliminary results.

5.4.3 Conclusion

The experimental results presented here confirm both the promise and the limitations of
current approaches to mobile-first, offline AI code generation. Our comparative analysis
across models, prompting strategies, and tuning setups lays a strong empirical foundation for
future optimizations, including RL-based training, prompt engineering, and on-device model
refinement.

Overall, the evaluation results highlight that fine-tuning, particularly when paired with
well-crafted prompting strategies, can meaningfully enhance both the semantic fidelity
and syntactic validity of Aptly-generated code. Fine-tuned GPT-4.1 models consistently
outperformed all other baselines across both metrics: achieving the highest normalized
CodeBLEU score (0.36± 0.12) and generating syntactically valid output in 331 out of 409
cases (81% parse success), outperforming the base GPT-4 by over 5%. While fine-tuned
GPT-3.5 showed marginal gains, QLoRA-finetuned LLaMA improved in parseability from 60
to 67 completions—an 11.7% relative gain—despite no improvement in CodeBLEU. Cross-
validation of the fine-tuned LLaMA models further demonstrated training stability, with
consistent weighted n-gram match scores across folds (µ = 0.193, σ ≈ 0.02), though differences
from baseline models were not statistically significant (paired t = −0.595, p = 0.584 for
CodeBLEU; t = 1.60, p = 0.185 for parseability). These findings confirm the effectiveness of
OpenAI’s fine-tuning pipeline for Aptly, while also pointing to the need for improved training
objectives or decoding strategies for smaller models. Future work may explore grammar-aware

63

loss functions, distillation from GPT-4.1, or constrained generation to preserve correctness in
low-resource, offline-friendly deployments.

64

Chapter 6

Discussion & Future Work

6.1 Discussion

This thesis explored how to enable offline, natural language–to–app generation on mobile
devices using Aptly and MIT App Inventor. We built and evaluated a system that runs a
quantized large language model directly on-device, introduced a custom evaluation framework
for Aptly’s grammar, and compared a range of models and prompting methods to understand
what works best.

Out-of-the-box models like GPT-3.5-turbo and GPT-4 performed strongly, especially when
given prompting examples, but fine-tuned GPT-4.1 outperformed all other models across
both semantic and syntactic metrics—achieving a normalized CodeBLEU score of 0.36± 0.12
and over 81% parseable completions. While fine-tuning smaller models like LLaMA with
QLoRA led to modest gains in parseability (an 11.7% relative improvement), they continued
to struggle with semantic fidelity. These results suggest that fine-tuning open source models
has a highly promising direction for future offline code generation. However, high semantic
similarity does not guarantee syntactic correctness—many models still failed to produce fully
parseable Aptly code, even after training. Bridging this gap will require new approaches, such
as grammar-aware loss functions, reinforcement learning, or constrained decoding techniques
to better align generation with both structure and function.

On the engineering side, we showed that it’s now feasible to deploy a working model fully
offline. While the Aptly server still runs outside the phone, the rest of the flow demonstrates
that local generation is practical with current hardware and quantization tools. Our evaluation
framework, built with a custom Tree-sitter parser and grammar-aware CodeBLEU, gives us a
way to track progress and compare model outputs in a structured, reliable way.

This work provides the technical groundwork for Aptly to be used offline, and raises new
questions about how to build models that are not just fluent, but structurally precise. We
return to the broader goals and implications of this work in the conclusion.

6.2 Future Work

While this thesis establishes a foundation for mobile-first, offline code generation using Aptly,
there are several promising directions for future research and development across engineering,

65

modeling, and human-centered evaluation.

6.2.1 Engineering Extensions

To fully realize an end-to-end mobile deployment pipeline, there are still engineering challenges
to address. Currently, the Aptly server runs externally and must be queried for each code
generation request. A natural next step is to remove this dependency by either embedding a
lightweight Python interpreter directly into the mobile runtime or translating the entire Aptly
parser and generator into JavaScript. This would allow the complete flow—from prompt
to App Inventor code—to run natively on-device. For the purpose of the initial generation,
we also did not require logic from the App Inventot Real Time Collaboration server, but
to enable editing apps after generation, we would need to embed this server directly on the
mobile app itself as well.

Additionally, the current system has been developed using a relatively limited dataset.
As we expand the number and diversity of natural language–to–Aptly code examples, we can
improve model robustness and enable more flexible training and evaluation strategies.

6.2.2 Model Improvement and Optimization

Improving on-device model performance remains an open and critical area of work. As
we grow the training dataset, we can explore more comprehensive fine-tuning workflows,
including full parameter tuning or adapter-based approaches tailored to mobile constraints.

Another key area for exploration is model compression. While initial experiments with
QLoRA and quantization enabled local deployment, we aim to take a deeper dive into model
pruning. A systematic study of pruning techniques could help us understand the trade-offs
between compression, accuracy, and parsing success—paving the way for a more efficient,
deployment-ready model.

Finally, an exciting direction involves using reinforcement learning (RL) to improve
syntactic correctness. By defining a grammar-aware reward function—e.g., based on parsing
success or AST structure—we can train the model to better internalize Aptly’s formal rules.
This could significantly boost the generation of syntactically valid programs, especially in
rule-heavy use cases.

6.2.3 Studying User Impact and Accessibility

To assess the real-world utility and accessibility of this tool, further user studies are essential.
Future work includes testing how novice programmers use Aptly on-device to create functional
mobile apps, exploring how prompt phrasing affects success, and gathering feedback on
interpretability and trust.

In addition, we are interested in evaluating Aptly’s utility in low-resource settings. Field
testing in environments with limited or no internet access can help us better understand
what users are able to build when operating purely offline—ultimately guiding the design of
tools that truly empower learners everywhere.

66

6.3 Conclusion

This thesis demonstrates that it is possible to generate App Inventor apps from natural
language entirely offline using a fine-tuned language model deployed on a mobile device.
We developed and evaluated a working pipeline that brings together model compression,
custom prompting strategies, and a tailored evaluation framework designed specifically for
Aptly. Along the way, we benchmarked model performance across prompting setups, assessed
the impact of fine-tuning, and identified clear gaps—particularly in syntactic validity—that
future work can address.

More broadly, this work pushes toward a more accessible model of computing. In many
parts of the world, reliable internet and powerful desktop machines are not a given. Tools
like Aptly, when made fully offline and mobile-compatible, can offer a new entry point: one
where learners can go from an idea to a working app with just a phone and a prompt.

The system presented here is only a first step, but it shows that this kind of access is
within reach. Continued progress—on both the modeling and deployment side—can help
expand who gets to build with code, and how. That is the larger vision: to make computing
creation possible for anyone, anywhere, regardless of connectivity or background.

67

68

Appendix A

Resources and Additional Experiments

A.1 Resources and Reproducibility

All source code, models, evaluation scripts, and study materials are publicly available to
ensure transparency and reproducibility of this work. Below is a list of relevant resources:

Code and Evaluation Framework

• GitHub Repository: All source code, evaluation scripts, and fine-tuning pipelines
are available at https://github.com/mit-cml/eval-codegen-aptly

Demonstration Videos

• Aptly-on-the-Phone Demo: Live demo of Aptly generating functional apps using a
local LLaMA model on mobile https://youtube.com/shorts/lve7uS41sKk

• Legacy App Inventor Mobile Server Demo: Prior demo showing App Inventor
served fully from a phone https://drive.google.com/file/d/1hfnLz0NBkJHUJrwAbloYpWEYyFXseYMc/
view?usp=sharing

Presentation Materials

• Research Presentation Slides (Current Work): Aptly on the Phone: Enabling AI-
Assisted App Creation Without the Internet https://www.canva.com/design/DAGlzbEdipU/
0h17i6mUm9Xf13pA8Un71Q

• Architecture Slides (Prior Work): Final presentation from previous year outlining
Aptly architecture and mobile deployment feasibility https://www.canva.com/design/
DAGE-7klJP4/Ym1mn_UjG6yrUpODiUOgsA

A.2 Python Baseline Experiments

To understand how CodeBLEU performs on traditional code generation benchmarks, we ran
evaluations on both the Concode and MBPP Python datasets. These results served as a

69

https://github.com/mit-cml/eval-codegen-aptly
https://youtube.com/shorts/lve7uS41sKk
https://drive.google.com/file/d/1hfnLz0NBkJHUJrwAbloYpWEYyFXseYMc/view?usp=sharing
https://drive.google.com/file/d/1hfnLz0NBkJHUJrwAbloYpWEYyFXseYMc/view?usp=sharing
https://www.canva.com/design/DAGlzbEdipU/0h17i6mUm9Xf13pA8Un71Q
https://www.canva.com/design/DAGlzbEdipU/0h17i6mUm9Xf13pA8Un71Q
https://www.canva.com/design/DAGE-7klJP4/Ym1mn_UjG6yrUpODiUOgsA
https://www.canva.com/design/DAGE-7klJP4/Ym1mn_UjG6yrUpODiUOgsA

Figure A.1: CodeBLEU evaluation results on the Python Concode dataset (top) and MBPP
dataset (bottom).

70

calibration point for interpreting CodeBLEU’s reliability and helped justify our adaptations
for Aptly-specific grammar.

These results confirmed that our Aptly-specific modifications to CodeBLEU were necessary
and well-justified.

Implementation Details. All experiments were run using our evaluation pipeline in
the public repository: https://github.com/mit-cml/eval-codegen-aptly/tree/fall_24. The
repository supports generation, evaluation, and visualization for code generation tasks using
models such as GPT-3.5, GPT-4, Claude, Gemini, and LLaMA.

• Generation: Run via generate_samples.py, which supports datasets human_eval,
mbpp, and concode. You can specify model, dataset, number of tasks, samples per task,
and whether to include CodeBLEU evaluation inline.

• Evaluation: Conducted with evaluate_samples.py, supporting both HumanEval
(pass@k) and CodeBLEU metrics. Outputs are saved in results/.

• Visualization: Interactive charts comparing model performance (average scores, stan-
dard deviation) can be generated using display_results.ipynb.

• Training and Pruning: A dedicated notebook, CodeGenerationWithSparsity.ipynb,
allows experimentation with sparsity-aware pruning of open-source LLMs.

Supported Models. The pipeline currently supports GPT-3.5, GPT-4, Gemini Pro, Gem-
ini Flash, Claude 3.5 (Sonnet), Claude Instant (8B), and LLaMA 3B/8B models. Adding a new
model involves editing the generate_one_completion function in generate_sample_helpers.py.

A.3 Model Pruning Trials

We applied sparsity-aware pruning methods to our fine-tuned LLaMA model in order to
reduce inference latency and memory requirements. While compression gains were significant,
test performance dropped sharply beyond 30% sparsity. Further work is needed to co-train
or fine-tune under pruning constraints to retain task-specific performance.

Implementation Details. Experiments were conducted using the CodeGenerationWithSparsity.ipynb
notebook in the fall_24 branch of our repository: https://github.com/mit-cml/eval-codegen-aptly/
tree/fall_24.

• Models: We used Unsloth’s 4-bit quantized models for efficient training and inference,
including LLaMA 3.1/3.2, Mistral, Phi, and Gemma variants.

• Training: Fine-tuning was done using SFTTrainer.

• Pruning: Structured sparsity was applied using prune_model(model, sparsity).

• Evaluation: Supported metrics include BLEU and CodeBLEU via evaluate_bleu
and evaluate_codebleu.

71

https://github.com/mit-cml/eval-codegen-aptly/tree/fall_24
https://github.com/mit-cml/eval-codegen-aptly/tree/fall_24
https://github.com/mit-cml/eval-codegen-aptly/tree/fall_24

• Inference: Evaluation on test samples was performed using run_inference_on_sample.

Preliminary Results. At 10% sparsity:

• CodeBLEU score: 0.1002

• Memory allocated: 4669.5 MB

• Memory reserved: 5213.5 MB

These early results highlight the trade-off between sparsity and code generation quality.
Future work will include more granular pruning schedules and co-training strategies to improve
performance under compression.

72

Appendix B

Configurations

B.1 System Text for Aptly Rule-Based Prompting

� �
Aptly is a programming language used to describe programs for MIT App Inventor. Aptly can be

described by the following grammar:

START of GRAMMAR

program = screen_block code_block*
screen_block = component_decl* ’\n’
component_decl = identifier ’=’ identifier ’(’ component_args? ’)’
component_args = parent_component | designer_properties | parent_component ’,’

designer_propreties
parent_component = identifier
designer_properties = designer_property (’,’ designer_property)*
designer_property = identifier ’=’ designer_value
code_block = ’\n’+ comment? decl ’\n’+
decl = global_decl | procedure_decl | event_decl | generic_event_decl
global_decl = ’initialize’ identifier ’=’ value
procedure_decl = ’to’ identifier ’(’ arglist? ’):\n’ scoped_statements
scoped_statements = commented_statement+ (return | do_return_expr)?
return = comment? ’return:\n’ scoped_expression
scoped_expression = comment? expression
arglist = identifier (’,’ identifier)*
event_decl = ’when’ identifier ’.’ identifier ’(’ arglist? ’):\n’ scoped_statements
generic_event_decl = ’when’ ’any’ identifier ’.’ identifier ’(’ arglist ’):\n’

scoped_statements
commented_statement = comment? statement
statement = method_call | local_var_decl | setter | cond_stmt | loop_stmt
method_call = ’call’ identifer (’.’ identifier) ’(’ argvalues? ’)’
argvalues = expression (’,’ expression)*
local_var_decl = ’let’ letlist ’:’ scoped_statements
letlist = local_variable ’=’ expression (’,’ letlist)?
setter = ’set’ location ’=’ expression
cond_stmt = ’if’ expression ’:’ scoped_statements (’elif’ expression ’:’ scoped_statements)*

(’else:’ scoped_statements)?
location = local_variable | global_variable | component_property

73

local_variable = identifier
global_variable = ’global’ identifier
component_property = identifier ’.’ identifier
loop_stmt = for_each_stmt | for_item_stmt | for_key_value_stmt | while_stmt
for_each_stmt = ’for’ identifier ’from’ expression ’to’ expression [’by’ expression]? ’:’

scoped_statements
for_item_stmt = ’for’ identifier ’in’ expression ’:’ scoped_statements
for_key_value_stmt = ’for’ identifier ’with’ identifier ’in’ expression ’:’ scoped_statements
while_stmt = ’while’ expression ’:’ scoped_statements
expression = cond_expression
cond_expression = or_expression (’if’ or_expression ’else’ expression)*
or_expression = and_expression (’or’ and_expression)*
and_expression = add_expression (’and’ add_expression)*
add_expression = mul_expression ([+-] mul_expression)*
mul_expression = paren_expression (’^’ paren_expression)*
paren_expression = number | location | method_call | primative_call | ’(’ expression |

local_var_decl | do_return_expr ’)’
do_return_expr = ’do:\n’ scoped_statements+ return
primative_call = identifier ’(’ argvalues? ’)’
comment = ’#’ comment_text
designer_value = boolean | number | string
value = boolean | number | string | list | dictionary | identifier
list = ’[’ list_entries ’]’
list_entries = value (’,’ value)*
dictionary = ’{’ dictionary_entries? ’}’
dictionary_entries = dictionary_entry (’,’ dictionary_entry)*
dictionary_entry = key ’:’ value
key = identifier | number | string
boolean = ’True’ | ’False’
number = [+-]?[0-9]+(’.’[0-9]+)?
string = "([^"]|\\")*"
identifier = [A-Za-z][A-Za-z0-9]*
comment_text = [^\n]*

END OF GRAMMAR

In addition to the grammar above, there are semantic rules related to Aptly, as well as
information about the framework within which App Inventor (and therefore Aptly) programs
operate.

Here are some semantic rules about Aptly:
A statement or a return within a scoped_statement production MUST be indented from the

previous scoped_statement block, and SHOULD be indented by +4 spaces.
Local variables (i.e. variables declared using the ’let’ keyword) can only be referenced

within the scope of their let statement. That means that those local variable references
MUST be indented under their declarations. Here is an example declaration and use of a
local variable:

‘‘‘
let x = 1

let y = x + 1
call print(y)

‘‘‘

74

Global variables (i.e. variables declared using the ’initialize’ keyword) MUST be referenced
by preceding their name with the keyword ’global’. For example:

‘‘‘
initialize z = 1
let x = 1

set global z = x + 1
call print(global z)

‘‘‘

Here is some information about Aptly, related to its connection to the MIT App Inventor
environment:

An Aptly program consists of components, which are basically objects which encapsulate visual
UI appearance and behavior and other non-visual behaviors.

Components have three major types of code associated with them:
Properties, which have getters and setters
Methods, which can be called to provide certain component-related behavior.
Event handlers, which are executed when certain events occur
UI components can be nested. The roots of the UI component trees are the "Screen" components

. Other UI components are descendents of Screen components. The initial Screen
component is named "Screen1". Other Screen components can have programmer-defined names.
The other main UI components that can contain child components are:

HorizontalArrangement and VerticalArrangement. They are layout components that cause
their children to be laid out horizontally and vertically. Note also that the Screen
component lays its children out vertically.

The first argument of a component declaration is its parent component. Subsequent arguments
are property initializers.

Aptly has a number of built in types: Text, Math (i.e. numbers), Logic (i.e. booleans), Lists
, Dictionaries and Colors.

For information about the full set of components that Aptly can use, use your knowledge of
MIT App Inventor.

For information about the full set of functions and operations available to use with the
built in Aptly types, use your knowledge of MIT App Inventor.

Here are some things to note about the grammar:
All components must be declared before any of the rest of the code

Make sure that any generated program follows the rules of the grammar, semantics and
environment described above. Also make sure to use your knowledge of MIT App Inventor
when choosing components and functions.

Verify that all components, methods, events and properties are actually valid in MIT App
Inventor. If you are unsure, consult the MIT App Inventor documentation.

Also make sure that for any generated program that you create, you prepend a line that
contains the text "START" and

append a line that contains the text: "STOP"� �
B.2 MLC Chat Config� �

{

75

"version": "0.1.0",
"model_type": "llama",
"quantization": "q4f16_1",
"model_config": {
"hidden_size": 3072,
"intermediate_size": 8192,
"num_attention_heads": 24,
"num_hidden_layers": 28,
"rms_norm_eps": 1e-05,
"vocab_size": 128256,
"tie_word_embeddings": true,
"position_embedding_base": 500000.0,
"rope_scaling": {
"factor": 32.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"

},
"context_window_size": 3072,
"prefill_chunk_size": 128,
"num_key_value_heads": 8,
"head_dim": 128,
"tensor_parallel_shards": 1,
"pipeline_parallel_stages": 1,
"max_batch_size": 128,
"disaggregation": false

},
"vocab_size": 128256,
"context_window_size": 3072,
"sliding_window_size": -1,
"prefill_chunk_size": 128,
"attention_sink_size": -1,
"tensor_parallel_shards": 1,
"pipeline_parallel_stages": 1,
"temperature": 0.6,
"presence_penalty": 0.0,
"frequency_penalty": 0.0,
"repetition_penalty": 1.0,
"top_p": 0.9,
"tokenizer_files": [
"tokenizer.json",
"tokenizer_config.json"

],
"tokenizer_info": {
"token_postproc_method": "byte_level",
"prepend_space_in_encode": false,
"strip_space_in_decode": false

},
"conv_template": {
"name": "llama-3",
"system_template": "<|start_header_id|>system<|end_header_id|>\n\n{system_message}<|
eot_id|>",
"system_message": "You are a helpful, respectful and honest assistant.",

76

"system_prefix_token_ids": [
128000

],
"add_role_after_system_message": true,
"roles": {
"user": "<|start_header_id|>user",
"assistant": "<|start_header_id|>assistant"

},
"role_templates": {
"user": "{user_message}",
"assistant": "{assistant_message}",
"tool": "{tool_message}"

},
"messages": [],
"seps": [
"<|eot_id|>"

],
"role_content_sep": "<|end_header_id|>\n\n",
"role_empty_sep": "<|end_header_id|>\n\n",
"stop_str": [
"<|end_of_text|>",
"<|eot_id|>"

],
"stop_token_ids": [
128001,
128009

],
"function_string": "",
"use_function_calling": false

},
"pad_token_id": 0,
"bos_token_id": 128000,
"eos_token_id": [
128001,
128008,
128009

]
}� �

Listing B.1: Full MLC Chat Cofig settings file for finetuned Llama-3B for Aptly

77

78

References

[1] App Inventor Foundation. Annual Impact Report 2023. https://www.appinventorfoundation.
org/news/annual-impact-report-2023. Accessed: 2025-04-19. 2023.

[2] E. Patton, A. Granquist, M. Kelleher, H. Abelson, and the MIT App Inventor Team.
Speak Your Mind: Introducing Aptly, the Software Platform that Turns Ideas into
Working Apps. https://appinventor.mit.edu/blogs/hal/2022/03/21/Aptly. Accessed:
2025-04-19. 2022.

[3] S. Papert. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, 1980.

[4] M. Resnick et al. “Scratch: programming for all”. In: Commun. ACM 52.11 (Nov. 2009),
pp. 60–67. issn: 0001-0782. doi: 10.1145/1592761.1592779. url: https://doi.org/10.
1145/1592761.1592779.

[5] S. C. Pokress and J. J. D. Veiga. MIT App Inventor: Enabling Personal Mobile
Computing. 2013. arXiv: 1310.2830 [cs.CY]. url: https://arxiv.org/abs/1310.2830.

[6] M. Tissenbaum, J. Sheldon, and H. Abelson. “From computational thinking to compu-
tational action”. In: Commun. ACM 62.3 (Feb. 2019), pp. 34–36. issn: 0001-0782. doi:
10.1145/3265747. url: https://doi.org/10.1145/3265747.

[7] Y. Xu and M. Warschauer. “Exploring young children’s engagement in joint reading
with a conversational agent”. In: Proceedings of the Interaction Design and Children
Conference. IDC ’20. London, United Kingdom: Association for Computing Machinery,
2020, pp. 216–228. isbn: 9781450379816. doi: 10.1145/3392063.3394417. url: https:
//doi.org/10.1145/3392063.3394417.

[8] E. W. Patton, D. Y. J. Kim, A. Granquist, R. Liu, A. Scott, J. Zamanova, and H.
Abelson. Aptly: Making Mobile Apps from Natural Language. 2024. arXiv: 2405.00229
[cs.HC]. url: https://arxiv.org/abs/2405.00229.

[9] D. Y. Kim, P. Ravi, R. Williams, and D. Yoo. “App Planner: Utilizing Generative AI in
K-12 Mobile App Development Education”. In: Proceedings of the 23rd Annual ACM
Interaction Design and Children Conference. IDC ’24. Delft, Netherlands: Association
for Computing Machinery, 2024, pp. 770–775. isbn: 9798400704420. doi: 10.1145/
3628516.3659392. url: https://doi.org/10.1145/3628516.3659392.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL]. url:
https://arxiv.org/abs/1706.03762.

79

https://www.appinventorfoundation.org/news/annual-impact-report-2023
https://www.appinventorfoundation.org/news/annual-impact-report-2023
https://appinventor.mit.edu/blogs/hal/2022/03/21/Aptly
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://arxiv.org/abs/1310.2830
https://arxiv.org/abs/1310.2830
https://doi.org/10.1145/3265747
https://doi.org/10.1145/3265747
https://doi.org/10.1145/3392063.3394417
https://doi.org/10.1145/3392063.3394417
https://doi.org/10.1145/3392063.3394417
https://arxiv.org/abs/2405.00229
https://arxiv.org/abs/2405.00229
https://arxiv.org/abs/2405.00229
https://doi.org/10.1145/3628516.3659392
https://doi.org/10.1145/3628516.3659392
https://doi.org/10.1145/3628516.3659392
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

[11] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han. SmoothQuant: Accurate
and Efficient Post-Training Quantization for Large Language Models. 2024. arXiv:
2211.10438 [cs.CL]. url: https://arxiv.org/abs/2211.10438.

[12] T. B. Brown et al. “Language Models are Few-Shot Learners”. In: (2020). arXiv:
2005.14165 [cs.CL]. url: https://arxiv.org/abs/2005.14165.

[13] A. Chowdhery et al. “PaLM: Scaling Language Modeling with Pathways”. In: (2022).
arXiv: 2204.02311 [cs.CL]. url: https://arxiv.org/abs/2204.02311.

[14] H. Touvron et al. “LLaMA: Open and Efficient Foundation Language Models”. In:
(2023). arXiv: 2302.13971 [cs.CL]. url: https://arxiv.org/abs/2302.13971.

[15] G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, and A. M.
Dai. Gemini: A Family of Highly Capable Multimodal Models. 2024. arXiv: 2312.11805
[cs.CL]. url: https://arxiv.org/abs/2312.11805.

[16] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. “DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter”. In: (2020). arXiv: 1910.01108 [cs.CL].
url: https://arxiv.org/abs/1910.01108.

[17] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. “GPTQ: Accurate Post-Training
Quantization for Generative Pre-trained Transformers”. In: (2023). arXiv: 2210.17323
[cs.LG]. url: https://arxiv.org/abs/2210.17323.

[18] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, and S. Han. “Tiny Machine Learning: Progress
and Futures [Feature]”. In: IEEE Circuits and Systems Magazine 23.3 (2023), pp. 8–34.
issn: 1558-0830. doi: 10.1109/mcas.2023.3302182. url: http://dx.doi.org/10.1109/
MCAS.2023.3302182.

[19] J. Frankle and M. Carbin. “The Lottery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks”. In: (2019). arXiv: 1803.03635 [cs.LG]. url: https://arxiv.org/abs/
1803.03635.

[20] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang. Pruning and Quantization for
Deep Neural Network Acceleration: A Survey. 2021. arXiv: 2101.09671 [cs.CV]. url:
https://arxiv.org/abs/2101.09671.

[21] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou. “MobileBERT: a Compact
Task-Agnostic BERT for Resource-Limited Devices”. In: (2020). arXiv: 2004.02984
[cs.CL]. url: https://arxiv.org/abs/2004.02984.

[22] P. Zhang, G. Zeng, T. Wang, and W. Lu. TinyLlama: An Open-Source Small Language
Model. 2024. arXiv: 2401.02385 [cs.CL]. url: https://arxiv.org/abs/2401.02385.

[23] MLC team. MLC-LLM. 2023-2025. url: https://github.com/mlc-ai/mlc-llm.

[24] G. Hinton, O. Vinyals, and J. Dean. “Distilling the Knowledge in a Neural Network”.
In: (2015). arXiv: 1503.02531 [stat.ML]. url: https://arxiv.org/abs/1503.02531.

[25] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey, and
N. A. Smith. “Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks”.
In: (2020). arXiv: 2004.10964 [cs.CL]. url: https://arxiv.org/abs/2004.10964.

80

https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://doi.org/10.1109/mcas.2023.3302182
http://dx.doi.org/10.1109/MCAS.2023.3302182
http://dx.doi.org/10.1109/MCAS.2023.3302182
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2101.09671
https://arxiv.org/abs/2101.09671
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://github.com/mlc-ai/mlc-llm
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2004.10964

[26] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen.
“LoRA: Low-Rank Adaptation of Large Language Models”. In: (2021). arXiv: 2106.09685
[cs.CL]. url: https://arxiv.org/abs/2106.09685.

[27] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. “QLoRA: Efficient Fine-
tuning of Quantized LLMs”. In: arXiv preprint arXiv:2305.14314 (2023). url: https:
//arxiv.org/abs/2305.14314.

[28] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. “BLEU: a method for automatic
evaluation of machine translation”. In: ACL ’02 (2002), pp. 311–318. doi: 10.3115/
1073083.1073135. url: https://doi.org/10.3115/1073083.1073135.

[29] M. Chen et al. “Evaluating Large Language Models Trained on Code”. In: (2021). arXiv:
2107.03374 [cs.LG]. url: https://arxiv.org/abs/2107.03374.

[30] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou, A. Blanco, and
S. Ma. “CodeBLEU: a Method for Automatic Evaluation of Code Synthesis”. In: CoRR
abs/2009.10297 (2020). arXiv: 2009.10297. url: https://arxiv.org/abs/2009.10297.

[31] J. Austin et al. Program Synthesis with Large Language Models. 2021. arXiv: 2108.07732
[cs.PL]. url: https://arxiv.org/abs/2108.07732.

[32] D. Hendrycks et al. “Measuring Coding Challenge Competence With APPS”. In: (2021).
arXiv: 2105.09938 [cs.SE]. url: https://arxiv.org/abs/2105.09938.

[33] Y. Li et al. “Competition-level code generation with AlphaCode”. In: Science 378.6624
(Dec. 2022), pp. 1092–1097. issn: 1095-9203. doi: 10.1126/science.abq1158. url:
http://dx.doi.org/10.1126/science.abq1158.

[34] OpenAI et al. “GPT-4 Technical Report”. In: (2024). arXiv: 2303.08774 [cs.CL]. url:
https://arxiv.org/abs/2303.08774.

[35] K. Zhang and D. Shasha. “Simple Fast Algorithms for the Editing Distance between
Trees and Related Problems”. In: SIAM Journal on Computing 18.6 (1989), pp. 1245–
1262. doi: 10.1137/0218082. eprint: https://doi.org/10.1137/0218082. url: https:
//doi.org/10.1137/0218082.

[36] X. Deng and E. W. Patton. “Enabling Multi-User Computational Thinking with
Collaborative Blocks Programming in MIT App Inventor”. In: Proceedings of the 1st
International Conference on Computational Thinking in Education. July 13–15. Hong
Kong, China, July 2017. url: https://appinventor.mit.edu/papers/CTE_2017_paper_
84.pdf.

[37] B. Mayo. Apps can request access to more RAM with iOS 15 entitlement, exceeding
normal system memory limits. Accessed: 2025-04-18. 2021. url: https://9to5mac.com/
2021/06/25/apps-can-request-access-to-more-ram-with-ios-15-entitlement-exceeding-
normal-system-memory-limits/.

[38] MLC team. MLC-LLM. 2023. url: https://github.com/mlc-ai/mlc-llm.

[39] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, and
D. Jiang. “CodeBERT: A Pre-Trained Model for Programming and Natural Languages”.
In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 2020, pp. 1536–1547.

81

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://appinventor.mit.edu/papers/CTE_2017_paper_84.pdf
https://appinventor.mit.edu/papers/CTE_2017_paper_84.pdf
https://9to5mac.com/2021/06/25/apps-can-request-access-to-more-ram-with-ios-15-entitlement-exceeding-normal-system-memory-limits/
https://9to5mac.com/2021/06/25/apps-can-request-access-to-more-ram-with-ios-15-entitlement-exceeding-normal-system-memory-limits/
https://9to5mac.com/2021/06/25/apps-can-request-access-to-more-ram-with-ios-15-entitlement-exceeding-normal-system-memory-limits/
https://github.com/mlc-ai/mlc-llm

[40] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. “Mapping Language to Code in
Programmatic Context”. In: Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing. Ed. by E. Riloff, D. Chiang, J. Hockenmaier, and
J. Tsujii. Brussels, Belgium: Association for Computational Linguistics, Oct. 2018,
pp. 1643–1652. doi: 10.18653/v1/D18-1192. url: https://aclanthology.org/D18-1192/.

[41] J. Austin et al. “Program Synthesis with Large Language Models”. In: CoRR abs/2108.07732
(2021). arXiv: 2108.07732. url: https://arxiv.org/abs/2108.07732.

[42] M. Brunsfeld. Tree-sitter: Incremental Parsing System. https://tree-sitter.github.io/tree-
sitter/creating-parsers. Accessed: 2025-04-26.

[43] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou, A. Blanco,
and S. Ma. CodeBLEU: a Method for Automatic Evaluation of Code Synthesis. 2020.
arXiv: 2009.10297 [cs.SE]. url: https://arxiv.org/abs/2009.10297.

82

https://doi.org/10.18653/v1/D18-1192
https://aclanthology.org/D18-1192/
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://tree-sitter.github.io/tree-sitter/creating-parsers
https://tree-sitter.github.io/tree-sitter/creating-parsers
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Overview
	1.2 MIT App Inventor and Aptly
	1.3 Research Questions
	1.4 Contribution

	2 Background & Preliminaries
	2.1 Child-AI Co-Creation and Educational Theory
	2.2 Machine Learning on Edge Devices
	2.2.1 State of the Art for Mobile LLM Deployment

	2.3 Tiny Machine Learning Techniques
	2.3.1 Quantization
	2.3.2 Pruning
	2.3.3 Knowledge Distillation

	2.4 Fine-tuning Techniques for LLMs
	2.4.1 Standard Fine-tuning
	2.4.2 Continued Pretraining
	2.4.3 Parameter-Efficient Fine-Tuning (PEFT)

	2.5 Code Generation Benchmarks
	2.5.1 Motivation
	2.5.2 Survey of Metrics

	2.6 Summary

	3 System Design: Aptly on Phone
	3.1 Background on Aptly and System Architecture
	3.1.1 MIT App Inventor and the Role of Aptly
	3.1.2 The Aptly Language and Code Generation Pipeline
	3.1.3 System Architecture and Integration with App Inventor

	3.2 Aptly Only on the Phone Architecture
	3.2.1 App Inventor Server on Mobile

	3.3 Model Selection Under Mobile Constraints
	3.3.1 System Constraints and Base Model Selection

	3.4 Finetuning LLaMA 3B
	3.5 Deploying LLM on the Edge
	3.5.1 Offline Chatbot via Local LLaMA Integration

	4 Evaluation Framework
	4.1 Dataset Construction
	4.1.1 Dataset Overview
	4.1.2 Datasets

	4.2 Metric Selection and Adaptation
	4.2.1 Preliminary Experimentation: HumanEval and CodeBLEU
	4.2.2 Adapting CodeBLEU for Aptly

	4.3 Tree-sitter Parser for Aptly
	4.4 Custom CodeBLEU-Based Evaluation Pipeline

	5 Results and Analysis
	5.1 Evaluation of Out-of-Box Models
	5.1.1 Models and Prompting Methods
	5.1.2 Evaluation Setup
	5.1.3 Results Summary

	5.2 Cross-Validation Evaluation of Finetuned Llama
	5.2.1 Fine-Tuning Robustness Across Folds
	5.2.2 Fine-tuned vs Baseline Performance Comparison Across Folds

	5.3 Evaluation of Fine-Tuned Models
	5.4 Preliminary User Studies and Additional Experiments
	5.4.1 Preliminary User Studies
	5.4.2 Technical Supplementary Experiments
	5.4.3 Conclusion

	6 Discussion & Future Work
	6.1 Discussion
	6.2 Future Work
	6.2.1 Engineering Extensions
	6.2.2 Model Improvement and Optimization
	6.2.3 Studying User Impact and Accessibility

	6.3 Conclusion

	A Resources and Additional Experiments
	A.1 Resources and Reproducibility
	A.2 Python Baseline Experiments
	A.3 Model Pruning Trials

	B Configurations
	B.1 System Text for Aptly Rule-Based Prompting
	B.2 MLC Chat Config

	References

