
Developing Visual Accessibility Options to Empower
Grade School Students in Designing Inclusive

Mobile Applications
by

Murielle Dunand

S.B., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and

Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2021

Ⓒ Massachusetts Institute of Technology 2021. All rights reserved.

Author……………………………………………………………………………………………...
Department of Electrical Engineering and Computer Science

May 20, 2021
Certified by………………………………………………………………………………………...

Harold Abelson
Class of 1922 Professor of Computer Science and Engineering

Thesis Supervisor
Accepted by……………………………………………………………………………………….

Katrina LaCurts
Chair, Master of Engineering Thesis Committee

Developing Visual Accessibility Options to Empower
Grade School Students in Designing Inclusive

Mobile Applications
by

Murielle Dunand

Submitted to the Department of Electrical Engineering and Computer
Science

on May 20, 2021, in partial fulfillment of the

requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract
As technology becomes more available to the general public, it is important that it be as

accessible as possible. Accessibility for mobile apps is crucial given how pervasive smartphone

use has become. For students who use MIT App Inventor -- an online platform that enables

users to make their own mobile apps -- part of being an effective app designer is to appreciate

the importance and practice of inclusive design.

I have empowered young students to make their apps more visually accessible by: (1)

offering new options for larger text, higher contrast, and alternate text in App Inventor apps, (2)

creating a curriculum for students aged 13-18 about the principles of visually accessible design,

and (3) running the workshop three times and collecting student feedback on the curriculum.

After the workshop, students reported a more accurate understanding of the nature of low vision

as well as increased comfort with making visually accessible apps. Overall, this work has shown

that it is both simple and effective to teach the principles of accessible design to students as

young as middle-school age. The code changes have been added to MIT App Inventor and the

curriculum is available on the App Inventor website.

Thesis Supervisor: Harold Abelson

Title: Class of 1922 Professor of Computer Science and Engineering

1

Acknowledgements

I would like to thank the members of the MIT App Inventor team for their support and advice. I

have learned more from them over the years than I can list and I am deeply grateful.

Specifically, I thank my advisor Hal Abelson for pushing me and making me think big, Evan

Patton for patiently meeting with me and helping me with the code section, Jeffrey Schiller for

reviewing my complete code changes, Selim Tezel for the advice on education and connecting

me to teachers, and Natalie Lao and Jessica Van Brummelen for coming before me and giving

advice on thesis writing.

In addition, I thank Kyle Keane and Judy Brewer for their invaluable advice on low vision

and education.

Finally, I would like to thank my parents for their support and encouragement in thesis

writing, and my little brother for his honest high-school perspective.

2

Table of Contents

Chapter 1: Introduction 6
1.1 Web Accessibility 6
1.2 Visual Accessibility 6
1.3 MIT App Inventor 7
1.4 Research Overview 7

Chapter 2: Prior Work 9
2.1 Accessibility with block-based programming 9
2.2 Ways of evaluating accessible technologies 9
2.3 Current accessibility features on mobile phones 10
2.4 Existing student education about accessibility 10

Chapter 3: Code changes to MIT App Inventor 11
3.1 Design considerations 11
3.2 Alt text field in images 13
3.3 High contrast mode 13
3.4 Larger default text 16
3.5 Improvements shown with the Google Accessibility Scanner 16

Chapter 4: Workshop Methodology 20
4.1 Curriculum plan 20
4.2 The CoinFlipGame App 22
4.3 Data collection 24

Chapter 5: Results 25
5.1 Prior experience of the population 25
5.2 Students learned how to make visually accessible apps 26
5.3 Students gained a better understanding of what low vision is 28
5.4 Students used the new accessibility options 29
5.5 Some students went above and beyond 31
5.6 Students understood the importance of visual accessibility 32

Chapter 6: Discussion 34

Chapter 7: Future Work 36

Bibliography 38

Appendix A: Code for the new features 40
A.1 App Inventor Button component (companion app) 41
A.2 App Inventor button component (web) 43
A.3 App Inventor Screen component 45

3

A.4 App Inventor Image Component 47

Appendix B: Workshop Materials 48
B.1 Pre-survey 48
B.2 Main workshop slides 54
B.3 Personas 63
B.4 Post-survey 69

4

List of Figures
Figure 1: An example app with user optionality. The left image is what the app looks like when the end
user presses the “High Contrast ON” button. The right image is what the app looks like when the end user
presses the “High Contrast OFF” button, and is also the default button coloring for App Inventor 12

Figure 2: The code required for the app in Fig. 1 to function . 12

Figure 3: Left: An image of an app with high contrast mode turned off. Right: An image of the same app
with high contrast mode turned on. Note that because the pink button is not the default button color, it was
not affected by the high contrast mode change. However, the top two buttons were default and so were
set to high contrast in the right image. 14

Figure 4: A diagram of the positions of the HighContrast and BigDefaultText options in the Screen
properties tab. 15

Figure 5: An image of a test app with no added accessibility features. 17

Figure 6: An image of a test app with high contrast on. 18

Figure 7: An image of a test app with high contrast and large text mode on. 19

Figure 8: A screenshot of the main screen of CoinFlipGame. 23

Figure 9: An example of a shared slide for students to write on. Students are assigned by name to each
slide so that they know where to write, and they answer the set questions as a group. 24

Figure 10: A chart detailing overall student answers to the pre-survey question: “How much experience do
you have with MIT App Inventor?” . 25

Figure 11: A chart detailing overall student answers to the pre-survey question: “What exposures have
you had to visually accessible design in the past?” 26

Figure 12: A chart comparing all pre-survey responses to all post-survey responses of how comfortable
students felt making basic App Inventor apps. 27

Figure 13: A chart comparing all pre-survey responses to all post-survey responses of how comfortable
students felt making visually accessible App Inventor apps. 28

Figure 14: The original CoinFlipGame (left) and a student’s new version using large text and high contrast
(right). 30

Figure 15: The original CoinFlipGame (left) and a student's new version using large text and a larger coin
image (right). 31

Figure 16: A student version of the CoinFlipGame with a font size incrementer (left) and a different
student’s version with a large button to enable dark mode that has just been pressed (right) 32

Figure 17: The original DatePicker interface (left) and the proposed new DatePicker interface (right). . . 36

5

Chapter 1

Introduction

According to the World Health Organization, there are 285 million people with visual

impairments worldwide [1]. Of these, 39 million people with visual impairments are categorized

as blind and 246 million are considered Low Vision (LV). The number of children with LV is three

times higher than the number of children with blindness.

MIT App Inventor seeks to empower learners to make an impact in their communities [2],

but impact is lessened if members of those communities are unable to use those apps due to

vision impairments. However, many students may not be aware of this facet of design. Given

that low vision is one of the most common chronic disabilities, addressing it offers a strong base

for accessible education; my hope is that including a full App Inventor curriculum about the

importance of visual accessibility will impress upon students the importance of general

inclusivity in their app design.

1.1 Web Accessibility
Web and mobile accessibility focus on ensuring that people with disabilities can use online

services easily and effectively. Currently, many sites and tools are developed with accessibility

barriers that make them difficult or impossible for some people to use. The WAI (Web

Accessibility Initiative) offers strong standards of accessibility. The WAI states that the types of

disabilities that affect web use are: “auditory, cognitive, neurological, physical, speech, and

visual” [3]. Accessibility is also helpful for web users without disabilities, such as people using

small screens or a slow internet connection. For websites and mobile apps, accessibility is

morally important and beneficial for business, as well as often required by law. Many aspects of

accessibility are easy to implement for designers, such as setting a larger font size or ensuring

that an image has alternate text.

1.2 Visual Accessibility
Visual accessibility centers on accessibility for users with a visual disability. There are many

types of visual disabilities, including blindness, low vision, and colorblindness. Each type has

different considerations in terms of web accessibility. This thesis focuses on visual accessibility

6

for app users with low vision. Low vision is generally defined as a condition in which a person's

vision cannot be fully corrected by glasses and interferes with daily activities such as reading

and driving [4]. Low vision often develops with age, and makes itself known in conditions such

as macular degeneration, glaucoma, cataracts, and retinoplasty. This can cause blurring or

distortion at the center or edges of vision, and make screen use challenging without assistive

devices and accessibility standards.

1.3 MIT App Inventor
MIT App Inventor is an online platform that empowers learners to make their own mobile apps.

App Inventor users can design their apps on the web by going to the App Inventor platform and

making their app out of “components” on the Designer tab of App Inventor. Components are

different functions of apps, and are separated into visible and non-visible components. Visible

components show up on the completed app screen, while non-visible components are not part

of the user’s interface , but provide access to app functions. A visible component might be a

button, a label, or a check-box. A non-visible component might be a text-to-speech function, an

internal clock, or a cloud database. To code the functionality of apps, designers switch to the

“Blocks” section of the platform and snap together different preset blocks of code to program

different behaviors. This approach is also known as block-based programming. Once the app

has been designed on the web, designers can test out and distribute their apps on mobile

devices for community use. These apps often reach a wide audience, and for everyone to use

them easily, they must be accessible.

1.4 Research Overview
In this work, I contribute (1) new options for larger text, higher contrast, and alternate text in App

Inventor apps, (2) a curriculum for students aged 13-18 about the principles of visually

accessible design, (3) results of three workshops run with the curriculum, and (4) discussion of

the most effective ways to teach visual accessibility to young students. In chapter 2, I discuss

the prior research on visual accessibility and block-based programming. In chapter 3, I explain

my coding methodology as well as the features of high contrast, large text, and alternate text

that I added to App Inventor. In chapter 4, I detail the structure of my workshop, the premade

app that students modified, and the data collection procedure. I go over my results in chapter 5.

Namely, students gained significant confidence in making visually accessible apps, having

overall come in with little App Inventor experience and no accessibility experience. The

7

workshops empowered students to understand the importance of visually accessible design,

with several students adding advanced accessibility features. I discuss the further implications

of the results in chapter 6, and conclude that teaching the basics of visually accessible design to

young students is simple and effective. In Chapter 7, I complete the thesis by discussing

avenues for future projects that arose from my work.

8

Chapter 2

Prior Work

2.1 Accessibility with block-based programming
Block-based languages tend to already be more accessible than other programming

languages due to their more intuitive methods of snapping relevant blocks together to make

code [4]. For individuals with motor impairments, the program Myna [5] offers a vocal user

interface so that users can program block-based languages by voice. Although originally

developed to work with Scratch v1.4, Myna has been extended to work with additional

block-based languages, including Lego Mindstorms, Scratch v2.0, and Blockly. By their very

nature, block-based programming environments aim to be more accessible, especially to new

learners, “by simplifying the mechanics of programming, by providing support for learners and

by providing students with motivation to learn to program” [6]. Ludi presents the drawbacks of

block-based programming for blind users due to the visually centered nature of the interface and

mouse-centric input [7]. However, interfaces that use Blockly (such as App Inventor) are based

on JavaScript and CSS, and so “widgets can be described…., keyboard navigation can be

provided, [and] clearly articulated properties for drag-and drop, widget states, or areas of a page

can be updated over time or based on an event”. This offers significant potential in improving

App Inventor’s accessibility. Illustrating this, Giurleo developed keyboard interactions in App

Inventor that allow users to navigate the interface using key commands rather than a mouse,

aiding those with motor impairments [8]. In this research, I take advantage of App Inventor’s

JavaScript base to add additional features that target people with visual impairments.

2.2 Ways of evaluating accessible technologies
General accessibility for tech has become a major concern for many groups [9]. A main

accessibility tester for Android apps is the Google Accessibility Scanner, an application that runs

in the background of the chosen app and offers suggestions based on the W3C accessibility

guidelines [10]. Additionally, Vontell also developed Bility, another Android app scanner that

streamlines the process compared to the Google Accessibility Scanner [11]. Testers with an

Apple device can use VoiceOver to test out a screen reader, or run the Accessibility Inspector

within iOS Simulator [12]. I will use these testers to try to get a unified assessment of the

accessibility of apps and then move on to surveying humans.

9

2.3 Current accessibility features on mobile phones
Android has several options for accessibility, including high-contrast text and buttons. It also has

a dedicated color modification mode. It is relevant to consider whether these accommodations

already solve accessibility needs within App Inventor. While the color modification is effective for

those who are colorblind, its high contrast modes do not greatly affect the appearance of the

typical App Inventor app, making built-in high contrast in App Inventor apps a very desirable

new feature. As shown in Chapter 3.5, I run the Google Accessibility Scanner on apps with

having the main accessibility options enabled, namely high contrast text, high contrast buttons,

and screen reader. Even with these features on, many App Inventor visual components fall short

of the W3C guidelines the scanner uses.

2.4 Existing student education about accessibility
Many courses are aimed at teaching sighted students the importance of universal design. Wang

details a holistic course for teaching web accessibility to undergraduate students. She raises the

important point that accessibility functions should be “seen as an integral part of the website

development process, rather than something extra to be added at the end of the process.

Keeping accessibility in mind encourages students to make better design decisions along the

way and seek optimal methods to ultimately achieve Web accessibility” [13]. With this approach,

including both an accessibility curriculum and new accessibility features is likely the most

effective method to teach students its importance. This curriculum includes lectures and

projects, and focuses on visual accommodations that app developers should consider. Though

Wang’s curriculum is aimed at undergraduate students in web development, I have referred to

her course as I designed my middle- and high school curriculum due to its focus on visual

impairment and its project options. For low vision specifically, the Fred Hollows Foundation

offers a low vision simulator with varying severities of cataracts, glaucoma, and retinopathy [14]

which offers a great experiential activity for students.

10

Chapter 3

Code changes to MIT App Inventor
The code changes made in this chapter aim to empower App Inventor designers to create apps

that are accessible to low vision app users. While it is beneficial to also make the App Inventor

platform itself accessible to low vision users, this is currently outside the scope of my work.

Chapter 7 details additional approaches to improve the accessibility of App Inventor.

To make the changes to MIT App Inventor, I forked the Github repository at

https://github.com/mit-cml/appinventor-sources, where App Inventor offers its code in open

source format. I first ran my changes on my local server, then hosted and tested the changes

through the Google App Engine on a server that testers could access.

3.1 Design considerations

Before making the changes to App Inventor, I consulted with several low vision users and

professionals. I met several times with lecturer Kyle Keane, instructor for the MIT course “6.811:

Principles and Practices of Assistive Technology” [15]. He offered guidance on what

components to prioritize and how to improve the preliminary code changes I made. I also met

twice with Judy Brewer, Director of the Web Accessibility Initiative (WAI) at the World Wide Web

Consortium (W3C) [16]. She helped focus my thesis scope on low vision and set me on the path

to making personas for the curriculum section of this work. Both emphasized the importance of

optionality for the wide range of low vision users.

Due to these valuable discussions, I prioritized coding features that had a high level of

optionality for many types of low vision. Therefore, all changes are set in the properties of App

Inventor components that the user can toggle on or off. Depending on the type of low vision for

which the app designer is building, they can choose to use some or all of the new features.

Similarly, it was important in my design that these new options be affected by the Blocks tab in

App Inventor. This allows the end user to change the accessibility properties from the completed

app, as long as the app designer codes that functionality into the app. For example, a user

could press a button marked “High contrast mode” on the live app and it would enable the high

contrast mode in the same manner as marking it in the preferences tab. This allows app

designers to incorporate the accessibility options in the layout of their apps so that low vision

users can pick their preference.

11

https://github.com/mit-cml/appinventor-sources

Figure 1: An example app with user optionality. The left image is what the app looks like when the end

user presses the “High Contrast ON” button. The right image is what the app looks like when the end user

presses the “High Contrast OFF” button, and is also the default button coloring for App Inventor.

Figure 2: The code required for the app in Fig. 1 to function.

12

3.2 Alt text field in images

Alternate text for images is an important aspect of web and app accessibility. App users with low

vision often use text-to-speech functions on their mobile devices to read out loud what may be

too difficult to see. This is why important images need alternate text to be visually accessible. If

an image is too small or too low-contrast for a user to distinguish, the text-to-speech function

can read the alternate text for that image aloud. Typically, alternate text is a direct and concise

description of the corresponding image . The Image component in App Inventor displays a

specified image on the mobile app screen. I added a new property to the Image component

called “AlternateText''. The app designer can type text into the “AlternateText” field, and when an

app user tries the built app with a text-to-speech assistive device, the “AlternateText” field is

compatible and the assistive device is able to read the text provided for that image component.

3.3 High contrast mode

One of the goals of this research is to ensure that making apps more visually accessible is easy

for the average app designer. The implemented high-contrast mode sets several visual

components to a high contrast version if they were previously in their default state. Thus, if the

color of a button was changed from the default grey, it will not change in appearance when high

contrast mode is turned on. This is because I assume that a designer has a reason for changing

text or button color, and would not appreciate that change being overridden by high contrast

mode. This check-box, which can be toggled at will, is named HighContrast and is a property of

the Screen component and thus native to every app.

13

Figure 3: Left: An image of an app with high contrast mode turned off. Right: An image of the same app

with high contrast mode turned on. Note that because the pink button is not the default button color, it was

not affected by the high contrast mode change. However, the top two buttons were default and so were

set to high contrast in the right image.

14

Figure 4: A diagram of the positions of the HighContrast and BigDefaultText options in the Screen

properties tab.

15

3.4 Larger default text

Similar to the high contrast mode, this large text mode only affects text that is displayed at its

default font size (14 point) and changes it to be much larger (24 point). This way, any fonts that

were set to a specific size by the designer are not affected. Like the HighContrast field, this

check-box is found in the properties of the Screen component and can be toggled at will.

3.5 Improvements shown with the Google Accessibility Scanner

As stated in section 1.4, I used the Google Accessibility Scanner to find App Inventor

components that needed accessibility changes. Figures 5, 6 and 7 illustrate the results of

running an example App Inventor app through the scanner.

16

Figure 5: An image of a test app with no added accessibility features.

Figure 5 is a screenshot of an unmodified app in the original version of App Inventor. The

accessibility scanner has identified three areas of possible poor accessibility by boxing them in

orange. From the top of the app to the bottom, these are:

● The grey action bar at the top is low contrast

● The large button is low contrast

● The empty text box with grey hint text is low contrast

The results of the accessibility scanner after implementing and turning on the high contrast

mode for the same app are shown in Figure 6.

17

Figure 6: An image of a test app with high contrast on.

Figure 6 is a screenshot of the same test app with high contrast mode turned on. The

accessibility scanner now identified only two areas for improvement. From the top of the app to

the bottom, these are:

● The grey action bar at the top is low contrast

● The empty textbox with yellow hint text is too small

After implementing and turning on large text mode as well as high contrast mode, the final result

is shown in Figure 7.

18

Figure 7: An image of a test app with high contrast and large text mode on.

With both large text and high contrast (Figure 7), the only issue that the accessibility raises is

the low contrast of the top grey bar. Overall, it is clear that adding high contrast and large text

mode improves app performance in accessibility checks. However, it is important to also test

how these changes are received by app users. In Chapter 4, I discuss how the curriculum was

designed to improve understanding of accessibility and the App Inventor changes.

19

Chapter 4

Workshop Methodology
To test the changes made to the App Inventor interface and discover if young App

Inventor students, who were not experts on visual accessibility, would understand the above

changes, I designed and taught three workshops consisting of a guide to visual accessibility and

hands-on work with App Inventor.

I ran three such workshops, for a total of 30 students aged 12-18. The first workshop

was on March 20, 2021 through the MIT eSpark program. This program is for students aged

12-13, and students pay a flat fee of $40, then apply to courses through a lottery. The course I

organized, named “Visual Accessibility with MIT App Inventor” got over 200 students in its

lottery, indicating that there is a high level of interest for such content. However, due to staffing

limitations, I could only accept 20 students. On the day of the workshop, 15 of these 20 students

attended the workshop.

The other two workshops were on April 12, 2021, with two different teachers who are

part of the Mobile Computer Science Principles program (Mobile CSP). Mobile CSP is a

high-school NSF-funded effort to teach students computer science using App Inventor. The first

workshop on April 12 had a class of 12 students, and the second workshop had a class of 4

students. Both of the Mobile CSP workshops consisted of high school students.

For all three workshops, the courses were designed for a 90-minute instruction time, for

students aged 12-18. The workshops were conducted over Zoom, and students received and

fulfilled consent forms and basic set-up instructions before the workshops.

4.1 Curriculum plan

For each workshop, the general schedule was:

Title Description Time

Welcome and

Introduction

Class introduction. Students and teachers introduce

themselves.

5 minutes

20

Low vision

simulation

Students try out a low vision simulator on their browser

and discuss what they see

5 minutes

Low vision

overview

Instructor goes through definitions of low vision, visual

accessibility, and App Inventor interface as needed

5 minutes

Persona

Discussion

Students split into groups and receive a “persona” of a

person with low vision for whom they will design the app.

10 minutes

App Testing Students test out a pre-loaded app and discuss in groups

how their assigned persona would like or dislike this app

10 minutes

Accessible App

Design

Students use the additions to App Inventor to make the

pre-loaded app more visually accessible for their persona

30 minutes

Presentation

and Discussion

Students share with the class what changes they made to

the pre-loaded app to improve visual accessibility, and

turn in their changed apps.

10 minutes

Post-survey Students take a short survey to give feedback on the

quality of the course

10 minutes

Students were expected to set up before class by completing the pre-survey as well as setting

up their Android devices with the experimental version of the MIT App Inventor companion.

They also accessed the local server on the web, where a sample project, CoinFlipGame, was

available in a repository.

The Low Vision Simulation asked students to visit the site https://simulator.seenow.org/ on

their mobile devices. This low vision simulator accesses the camera of the mobile device and

places a virtual filter over it, simulating different types of low vision. Students were also

encouraged to use the available sliders on the site to change the severity of low vision, and to

swap between glaucoma, cataracts, macular degeneration, and diabetic retinopathy. Then, the

class reconvened to discuss what students had seen.

For the Persona Discussion, students were split into groups of three, except for the class of

four students where each student instead worked individually. Each “group” was assigned to

21

https://simulator.seenow.org/

analyze a persona of a low vision user . The personas spanned a large range of age, gender,

nationality, and low vision type to offer a diverse set of analyses (see Appendix section B.3).

Each of the 6 available personas had a short profile and distinct goals. The population of

personas consisted of:

● a 68-year-old male professor with cataracts;

● a 21-year-old female student with migraines and light sensitivity;

● a 43-year-old female accountant with retinopathy from diabetes;

● a 70-year-old female retiree with glaucoma and limited central field vision;

● a 12-year-old colorblind male middle-schooler;

● a 16-year-old male student with retinopathy of prematurity and patchy vision loss.

Since the workshops were handled remotely, students in the same group wrote on a shared

Google Slides slide, and the entire slideshow was saved.

For the App Testing, students returned to the same groups as in the persona discussion. They

then played with the premade app (CoinFlipGame) and critiqued its design with their low vision

persona in mind. Like in the previous persona discussion, students wrote their opinions on a

shared Google Slides document.

The Accessible App Design section started with my going over the new changes to MIT App

Inventor. I demonstrated how the HighContrast, BigDefaultText, and AlternateText fields were

used by sharing screens with the class with App Inventor open. Then, students worked

individually to improve their local versions of CoinFlipGame. They were encouraged to discuss

the process with their peers or ask an instructor for help if needed.

4.2 The CoinFlipGame App

The premade app that students critiqued was a simple game app. The game starts with a point

tally of 0, and the player can press a button to flip a coin. If the coin shows heads, the player

gains a point. If the coin shows tails, the player loses a point. At 3 total points, the player wins

the game and the app shows a win screen. At -3 total points, the player loses the game and the

app shows a loss screen. Regardless of win or loss, the player is presented with the option to

play again.

22

Figure 8: A screenshot of the main screen of CoinFlipGame.

The CoinFlipGame app used all default values in its properties, including font size, button size,

and screen color. It did not utilize any of the new accessibility options.

23

4.3 Data collection

Data were collected using the pre- and post-surveys, as well as written results on the slides

completed during the workshop. Informed consent was obtained from all workshop participants.

Since most of the workshop participants were under 18, parents signed the consent forms while

the students signed assent forms per COUHES guidelines. The workshops had a population of

15 middle-schoolers and 15 high-schoolers. 2 total middle-schoolers signed the consent forms

and did both surveys, while 13 high-schoolers did the same.

Two types of data were collected: written and App Inventor project files. The written data

consisted of the two surveys as well as comments written during the workshop, and the App

Inventor project files consisted of the built files of the improved app made by the students. The

pre-survey contained 5 scale questions and 3 free response questions. The post-survey was

made up of 3 scale questions and 6 free response questions.

Because the workshops were done remotely, students were requested to write group

solutions on a set of shared Google Slides so that their work could be reviewed and discussed

in real time. Data were only collected for groups of students who had all completed the consent

forms.

Figure 9: An example of a shared slide for students to write on. Students are assigned by name to each

slide so that they know where to write, and they answer the set questions as a group.

24

Chapter 5

Results

5.1 Prior experience of the population

All of the results shown in this chapter combine responses across all three workshops. There is

one set of responses for all pre-surveys, and another one for all post-surveys. A question on the

pre-survey asked students “How much experience do you have with MIT App Inventor?”

Students could select values 1-4, where 1 is “None at all” and 4 is “a lot”.

Of the 23 valid pre-survey responses, 12 reported that they knew “a moderate” amount of App

Inventor. Only 1 person said that they knew “A lot”, and two reported “none at all”. This is not

surprising, because the workshops were made up of students just starting to learn App Inventor.

Both of the “None at all” responses came from the middle-school group, who had had less time

to be familiar with App Inventor and were not part of a Mobile CSP course.

Figure 10: A chart detailing overall student answers to the pre-survey question: “How much experience do

you have with MIT App Inventor?”

25

The pre-survey asked “What exposures have you had to visually accessible design in the past?”

Figure 11: A chart detailing overall student answers to the pre-survey question: “What exposures have

you had to visually accessible design in the past?”

74% of students had either never heard of visual accessibility or only heard it mentioned. This is

partly why the workshop includes an overview of the nature of visual accessibility and its

importance in app design. This result is also informative of later results, since the intended

audience for these changes are App Inventor users who may not necessarily be professionals in

accessible design. Overall, the surveyed population tended to have low to medium experience

with App Inventor, and low experience with visually accessible design.

5.2 Students learned how to make visually accessible apps

Figures 12 and 13 illustrate the changes in student sentiment for several questions that were

asked in both pre- and post-surveys. First, students were asked to rank how much they agreed

with the statement: “I feel comfortable making basic App Inventor apps”.

26

Figure 12: A chart comparing all pre-survey responses to all post-survey responses of how comfortable

students felt making basic App Inventor apps.

As can be seen in Figure 12, there was little change in how comfortable students felt about

making App Inventor apps. Several students went up from “Neither agree nor disagree” to

“Somewhat agree” on their confidence, but this may not be significant. This lack of change is

consistent with the fact that this workshop was not about designing basic App Inventor apps per

se, but rather about visual accessibility within App Inventor.

Next, students were asked to report on each survey how much they agreed with this statement:

“I feel comfortable making visually accessible App Inventor apps”.

27

Figure 13: A chart comparing all pre-survey responses to all post-survey responses of how comfortable

students felt making visually accessible App Inventor apps.

Here, we see a noticeable increase in students strongly agreeing that they are comfortable

making visually accessible apps. This field was the only one to increase in population, from 1 to

9, between surveys. This result implies that students learned enough about visually accessible

design to improve their confidence in it, which was the goal of the workshop. This also suggests

that workshop materials were effective and could be used as future curriculums for visual

accessibility.

5.3 Students gained a better understanding of what low vision is

Another question that was asked on both pre- and post-surveys was “What would you say it

means for a person to have low vision? Responses in the pre-survey were fairly basic. Two

responses mentioned needing glasses, and most of the other answers were variations on “not

being able to see well”. Below are several samples from the pre-survey responses.

“They have problems seeing things, either with color, distance, etc”

28

“Poor eyesight, maybe they need glasses can't see much at distances”

“I think it means that a person with low vision has a hard time seeing things that are right in front

of them”

It is clear that there is a range of different responses between students, pointing out various

parts of low vision. After the post-survey, the answers became more general:

“Someone whose vision is impaired in some way. It can be near- or far- sighted, blurriness,

partial blindness, warped vision.”

“I would say that it means a variety of different things. They have trouble seeing things overall

weather that be size color or any other area of functionality.”

Several responses also included specific examples of low vision conditions, such as glaucoma

or cataracts, which had been mentioned as examples during the workshop. Overall, answers

became more holistic to encompass a wider spectrum of low vision conditions.

5.4 Students used the new accessibility options

Many methods exist to make apps more visually accessible. One of the considerations for this

thesis was to see if students would use the newly implemented options (high contrast mode, big

text) while improving the CoinFlipGame app. This was verified by asking students to submit their

completed app files to the investigator for review. All of the students used some combination of

the high contrast and large text modes for their final apps. The combinations of modifications

varied depending on the persona for whom the students were making the app. For example,

one student had a persona with light sensitivity, so their final app had a grey background instead

of the default white background to make it gentler on the eyes.

We can see in Figure 14 that students used the high contrast mode to change the button color

and increase the font size. Other common changes included increasing the size of the coin

image.

29

Figure 14: The original CoinFlipGame (left) and a student’s new version using large text and high contrast

(right)

30

Figure 15: The original CoinFlipGame (left) and a student's new version using large text and a larger coin

image (right).

After a short demonstration, students were interested in using the changes to App Inventor and

demonstrated that interest by including the features in their personal versions of the

CoinFlipGame app. Overall, students used a mixture of new features and existing features (e.g.,

increasing image size) to make their apps more visually accessible.

5.5 Some students went above and beyond

Since this workshop only required a basic knowledge of MIT App Inventor, students were able to

make all basic changes directly in the Designer section of App Inventor. However, the option

was left open for students to go into the Blocks section and change the actual programming

behind the CoinFlipGame app to improve accessibility. Several of the more experienced

students took this option. One student used the existing TextToSpeech component in App

Inventor to read the text of buttons when they were pressed.

31

Adding new code blocks also allowed for increased optionality. One student made two new

working buttons to increase and decrease the font size to personal preference. Another one set

a toggle for a dark mode, since they were working with the light sensitive persona.

Figure 16: A student version of the CoinFlipGame with a font size incrementer (left) and a different

student’s version with a large button to enable dark mode that has just been pressed (right).

This demonstrates that additional accessible options can be implemented in App Inventor with a

knowledge of its blocks and components. I recommend a more bloc-based version of this

curriculum as a course for advanced App Inventor users.

5.6 Students understood the importance of visual accessibility

An important consideration is whether students understand why visual accessibility is important,

rather than simply how to build it. If students had the technical knowledge to make apps visually

accessible but did not consider it important, they would be unlikely to actually put that

32

knowledge to use. I did not add an explicit question to the post-survey of how likely they would

be to make accessible apps in the future, since answers may be skewed due to the desire to

please the instructor. Instead, I checked the answers to the post-survey question “What were

2-3 things you learned over the course of this workshop?” to discover whether students would

volunteer that information themselves. Of the 15 full responses to the post-survey, 7 of them

included understanding that making visually accessible apps was important in general app

design. This included quotes such as:

“As a app creator you need to have your app accessible to people. Another thing is that

sometimes you need to have someone critique your work.”

“Visually impaired people need help when it comes to apps It’s better to help more people be

able to use your app”

“To be more attentive to the visual aspects of a project, and not give up easiliy.”

Another six responses stated that they learned what visual accessibility or low vision was during

the workshop, including:

“vision impairment isn't limited to blindness, blindness isn't always a complete lack of vision,

including visually accessible design does not need to be hard”.

About half the students reported an understanding of the importance of inclusive app

design, rather than simply an understanding of its definition. This is an important additional step

to include in all related workshops to ensure that the accessibility skills taught are put to practice

when students decide to make their own apps.

Overall, students showed a great increase in understanding of how to make accessible

apps, what low vision is, and why it is important. This workshop is best suited for students with

low experience with App Inventor and little to no prior knowledge of visual accessibility. For

students with high experience with App Inventor, an alternate and more challenging version of

this workshop using the text-to-speech component is recommended. In all, these results

indicate that accessibility education for students using MIT App Inventor is highly effective and

thus enables a greater output of accessible apps.

33

Chapter 6

Discussion
The vision of this research is to educate young students in visually accessible app

design and empower them to use these techniques in future design projects and careers. To do

this, I: (1) developed new accessibility features for completed App Inventor apps, (2) created

workshop curriculum to teach visual accessibility principles and app design through the MIT App

Inventor tool, (3) taught this workshop three times with groups of middle- and high-school age

students. My major findings are summarized below:

● Because low vision users are an extremely broad group, it is important to include
optionality when offering accessibility options. Thus, my changes include simple

toggles and fully programmatic functionality for both app developers and users.

● There is strong interest in visually accessible design from students. The MIT

eSpark program received over 200 applicants, and the Mobile CSP recruiting also

received more interested teachers than I could work with. This is promising news for

future accessibility courses using App Inventor.

● Students can easily understand and utilize the coded changes to App Inventor.
Surveyed students showed a clear increase in their understanding of making accessible

apps, and a vast majority of changed apps used the high contrast, big text, and alternate

text options described in the workshop. Students did not have questions as to how to

use these options and easily integrated them into their projects.

● Students and educators are passionate about accessible design. In addition to the

high level of interest in the workshops, students reported an understanding of why

visually accessible design is important and how increased inclusivity is an improvement

to apps. Several students and teachers asked to be notified when the changes would be

available on the live App Inventor platform. Some students considered accessibility in

terms of themselves and their loved ones.

This work has shown that it is both simple and effective to teach the principles of accessible

design to students as young as middle-school age. After the workshop, students reported a

more accurate understanding of the nature of low vision as well as increased comfort with

making visually accessible apps. Being able to consider accessibility is a powerful skill for young

34

students. This additional consideration for other populations can offer a head start in any design

career; outside of careers, an inclusive view is consistently beneficial. Through the surveys, I

found that students gained greater understanding of visually accessible app design in just one

90 minute workshop. Therefore, I recommend that these visually accessible features be

included in current App Inventor curricula. I believe that, with proven student enthusiasm and

early curriculum, we can foster a drive for inclusive design in tomorrow’s engineers.

35

Chapter 7

Future Work
There are many possible extensions to the technical work done here as well as many other

questions that can be asked from the educational research point of view. First, there are some

App Inventor components that need visually accessible updates. Chief amongst them is the

DatePicker component, a mobile phone widget that shows an interactive calendar when

pressed. The current version of the DatePicker has lower contrast compared to my proposed

alternative.

Figure 17: The original DatePicker interface (left) and the proposed new DatePicker interface (right)

In addition, the top bar of App Inventor apps was shown by the accessibility scanner to be too

low contrast. Other App Inventor components, such as checkboxes and sliders, require

increases in size as well.

Secondly, the scope of this project was focused on low vision app users, with the

designers mostly being sighted. It is important to also make sure that the App Inventor

36

developer interface is visually accessible, and not only its completed apps. A project that

includes visual optionality on the App Inventor web interface would surely be welcome.

Expanding the scope of this project, it is important for App Inventor to be accessible to all

of its users with disabilities, not only those with low vision. This should include users with full

blindness, motor impairments, and learning disabilities. A good place to start with other types of

accessibility would be allowing apps designers to move components and code blocks using

voice or key commands rather than requiring mouse input.

On the education side, these workshops were conducted entirely remotely due to

COVID-19 concerns. It would be useful to make the workshop materials available in an

in-person format, to allow teachers to use the materials in a traditional classroom environment.

This would entail changing the shared slides to printable worksheets as well as several other

considerations. Overall, however, the workshop is fairly flexible in terms of whether it is

conducted in-person or remotely. A greater sample size of students would of course always be

useful.

In addition, the workshop was well-received by middle-school students but less data

were able to be collected about them. Running this workshop for middle-school students with

more formal feedback could prove its effectiveness with that age group.

Finally, since these changes are being made available to the entire App Inventor

curriculum, some form of guide to the new changes should be made available to new and

existing users, so that they can take advantage of the new features. This guide could be in the

form of workshop materials, live presentation, or a video guide. For the workshops to reach a

larger population, translation into different languages would be welcome. Some form of

integration into current App Inventor tutorials would go a long way to making these changes

clear to App Inventor users.

37

Bibliography
1. "Blindness and vision impairment - World Health Organization." 8 Oct. 2019,

https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. Accessed 8

Sep. 2020.

2. "About Us - MIT App Inventor." https://appinventor.mit.edu/explore/about-us.html. Accessed

4 April. 2021.

3. (WAI), W3C Web Accessibility Initiative. “Introduction to Web Accessibility.” Web Accessibility

Initiative (WAI), W3C, www.w3.org/WAI/fundamentals/accessibility-intro/#main.

4. “Visual Disabilities - Low Vision.” WebAIM, WebAIM, webaim.org/articles/visual/lowvision.

5. Wagner, Amber, et al. “PROGRAMMING BY VOICE: A HANDS-FREE APPROACH FOR

MOTORICALLY CHALLENGED CHILDREN.” Proceedings of the 2012 ACM Annual

Conference Extended Abstracts on Human Factors in Computing Systems Extended Abstracts -

CHI EA '12, 2012, doi:10.1145/2212776.2223757.

6. Kelleher, Caitlin, and Randy Pausch. “Lowering the Barriers to Programming: a Survey of

Programming Environments and Languages for Novice Programmers .” ACM Computing

Surveys, vol. 37, no. 2, 2005, pp. 83–137., doi:10.1145/1089733.1089734.

7. S. Ludi, "Position paper: Towards making block-based programming accessible for blind

users," 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond), Atlanta, GA, 2015, pp.

67-69, doi: 10.1109/BLOCKS.2015.7369005.

8. E Giurleo, "Keyboard Interactions in Block-Based Coding Environments”

https://drive.google.com/file/d/0B8AUNoeCnCCASzUwMWtwWUhmN1E/view

9. WebAIM. (2020, April 14). Introduction to Web Accessibility. WebAIM - Introduction to Web

Accessibility. https://webaim.org/intro/.

10. "Get started with Accessibility Scanner - Google Support."

https://support.google.com/accessibility/android/answer/6376570?hl=en-GB. Accessed 8 Sep.

2020.

11. Vontell, Richard Aaron. “Bility : Automated Accessibility Testing for Mobile Applications.” MIT

Libraries, 2019. https://dspace.mit.edu/handle/1721.1/121685. Accessed 8 Sep. 2020.

12. "About Accessibility Verification on iOS - Apple Developer." 23 Apr. 2013,

https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/Testingthe

AccessibilityofiOSApps/TestingtheAccessibilityofiOSApps.html. Accessed 8 Sep. 2020.

38

13. Wang, Ye Diana. “A Holistic and Pragmatic Approach to Teaching Web Accessibility in an

Undergraduate Web Design Course.” Proceedings of the 13th Annual Conference on

Information Technology Education - SIGITE '12, Oct. 2012, doi:10.1145/2380552.2380568.

14. Hollows, Fred. Fred Hollows - Sight Loss Simulator, The Fred Hollow Foundation,

www.hollows.org/sightsimulator/.

15. Keane, Kyle. “Kyle Michael Keane.” KYLE MICHAEL KEANE, www.kylekeane.com/.

16. “Judy Brewer, Bio.” W3C, W3C, 2018, www.w3.org/People/Brewer/.

39

Appendix A: Code for the new features

All code snippets show what was modified for this thesis. Any highlighted section shows an
addition to the original code. If no part is highlighted, then the whole selection was added for this
thesis. Note that sections A.1 and A.2 show changes in code for the ButtonBase component
only, but analogous changes (not included in this appendix) were made for the Textbox,
PasswordTextbox, Label, and Sliders components.

40

A.1 App Inventor Button component (companion app)

41

42

A.2 App Inventor button component (web)

43

44

A.3 App Inventor Screen component

45

46

A.4 App Inventor Image Component

47

Appendix B: Workshop Materials

B.1 Pre-survey

48

49

50

51

52

53

B.2 Main workshop slides

54

55

56

57

58

59

60

61

62

B.3 Personas

Persona #1
Name: Elijah

Gender: Male

Age: 68

Profession: University Professor

Country: South Africa

Biography:

Like many people his age, Elijah developed mild cataracts and now

has low vision related to visual clarity. When he tries to read small text on a

screen, it is generally too blurry for him to read. This gives him some

trouble in his work, because most of the classes he teaches has his

students return their homework in electronic form. To be able to grade his

students’ work more easily, Elijah uses a screen magnifier to make the text

he needs to read bigger. However, he is concerned that as his cataracts

worsen, he may need more than just a text magnifier to be able to read

small text.

Goals and Challenges:

● Design good classes for his students

● Grade his students’ work more easily

● Read academic papers quickly

63

Persona #2
Name: Isabella

Gender: Female

Age: 21

Profession: College Student

Country: Spain

Biography:

Isabella is a college student, currently studying biology in Spain. She

started getting migraines in high school which have become chronic. One

of the side effects is strong light sensitivity. This makes using fluorescent

screens very straining for long periods of time, but her lab work often

requires her to analyze data on screens. To lessen the effects of exposure

to screen light, Isabella wears tinted glasses and has enabled dark mode

on all of her devices. Sometimes, dark mode is incompatible with the apps

that she uses, which gives her extra trouble and concern that the app may

trigger a migraine, so she avoids sites with lots of bright colors regardless.

Goals and Challenges:

● Work in a busy lab with her peers

● Read large spreadsheets of biological data

● Graduate from her school with her classmates

Persona #3
Name: Ming

64

Gender: Female

Age: 43

Profession: Accountant

Country: China

Biography:
Ming is an accountant in Shanghai, China, and works with Google

Docs and spreadsheets of data. She was diagnosed with type 2 diabetes in
her 30s. One of the side effects of her diabetes is diabetic retinopathy. This
means that her high blood sugar levels caused damage to her eyes. Her
vision is a bit blurry and Ming has trouble distinguishing contrast in text and
images. When she navigates websites, she sometimes misses important
things like the "login" or "submit" buttons, or even pop-up messages
because they don't stand out visually to her. She needs items to be
marked with more contrast or a distinguishing visual border. Ming uses high
contrast mode on her computer and mobile device, but this is not always
enough for her. When she cannot read the text at all, she uses a screen
reader to read the text to her aloud.

Goals and Challenges:

● Find an online calculator that is easy for her to use

● Read client reports more easily

● Advance in her job and prove herself as an accountant

65

Persona #4
Name: Sarah

Gender: Female

Age: 70

Profession: Retired

Country: Australia

Biography:

Sarah is a 70 year old grandmother who has recently developed
severe glaucoma. She has retired in Australia but still has a lively social life
and loves to give gifts to her grandchildren. Sarah has a limited field of
vision, especially in the center of her vision. This is known as central field
loss. This does not stop her from spending time with her grandchildren, but
when she tries to use a mobile device, she has trouble seeing the center of
her screen. She uses a screen reader to read the text and describe the
images on her screen, and relies on images having alternate text that can
be read by her screen reader. She mostly uses her mobile device to shop
online for gifts, and wishes that the images of products were well described
and compatible with her screen reader.

Goals and Challenges:

● Shop online quickly and easily

● Video call her grandchildren often

● Read email advertisements to find deals on gifts

66

Persona #5
Name: Rob

Gender: Male

Age: 12

Profession: Student

Country: United States

Biography:

Rob is a 12 year old middle school student in the United States. Like
1 in 12 boys, Rob was born with colorblindness. Rob has red-green
colorblindness, and so he has trouble distinguishing between the two
colors. He loves to play soccer and phone games. When he plays on his
phone, he used to have trouble distinguishing different parts of the game,
especially when green means go and red means stop. His parents adjusted
the colors on his phone so that they are more distinguishable for him, but
not all apps are compatible with the color scheme that works for him. He
hopes that he can keep playing, both alone and with others.

Goals and Challenges:

● Find games that are compatible with his phone color scheme

● Distinguish between his soccer teammates’ jerseys

● Win his next soccer game and make friends

67

Persona #6
Name: Advik

Gender: Male

Age: 16

Profession: Student

Country: India

Advik is a 16 year old student from India. He has retinopathy of
prematurity, which means that he was born before his eyes had finished
developing, and so Advik has patches of vision loss across his vision. He
has trouble noticing small details, especially text, which may be obscured
by floating dark patches in his vision. To do his homework, he first scans
the papers onto his mobile device. After scanning, he reads his homework
with a screen magnifier so he can zoom in on specific words and images
he has trouble seeing. Advik really does not mind spending the extra time
to adjust the size to read, but it is stressful for him when teachers do not
share homework in time for him to be able to read and keep up with his
classmates.

Goals and Challenges:

● Ask his teachers to assign his homework digitally in advance

● Build up experiences to apply for college

● Use an e-reader to read his favorite novels

68

B.4 Post-survey

69

70

71

72

73

