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ABSTRACT 
Recent advancements in deep learning have brought 

machine learning and its many applications to the forefront 

of our everyday lives. As technology has become more and 

more integrated into our educational curriculum, 

researchers have focused on creating deep learning tools 

that allow students to interact with machine learning in a 

way that incites curiosity and teaches important concepts. 

Our research contribution focuses on applying transfer 

learning and spectrogram audio classification methods to 

teach basic machine learning concepts to students. We 

introduce the Personal Audio Classifier (PAC), a web 

interface that allows users to train and test custom audio 

classification models that can classify 1-2 second sound 

bites recorded by the user. We also contribute a custom 

App Inventor extension that allows users to use the output 

of the web interface to create App Inventor applications 

that rely on their trained custom audio classification model.  

1. INTRODUCTION 
From personal voice assistants to self-driving cars, machine 

learning applications have permeated every aspect of our 

daily lives. Much of these advances are thanks to the 

subfield of machine learning known as deep learning, a 

field primarily concerned with building large neural 

networks to perform specialized tasks. Yet as researchers 

began to make significant advancements in deep learning 

during the past decade, it became clear that computational 

complexity, training time, and esoteric development tools 

could pose as a deterrent to widespread development of 

deep learning applications. Transfer learning was born out 

of this deficiency, spurred by Yosinski’s 2014 work [1] on 

transferable features in deep neural networks. 

1.1. Transfer Learning 

Transfer learning is a machine learning method where an 

existing deep learning model is used as the starting point to 

train a model specialized for a slightly different task. The 

ability to start with a pre-trained model allows new 

developers to apply deep learning to solve novel problems 

without the vast compute and time resources normally 

needed to train neural networks from scratch. To take an 

example, we can look at one recent notable application 

from the field of deep learning: the development of robust 

deep convolutional neural networks used for image 

classification and object recognition. In 2012, Hinton [2] 

first showed that their deep neural network with over 60 

million parameters and 650,000 neurons could be trained to 

classify ImageNet images with startling accuracy. However, 

developing this complex model required a uniquely 

efficient GPU implementation of the convolution operation, 

tens of thousands of dollars in state-of-the-art GPU 

hardware, and months of training and testing. While this 

development process is likely only accessible to 

researchers or institutions with deep pockets, the result is 

one that should be available to developers of all levels and 

even students of any age. Transfer learning has allowed for 

just this, giving machine learning enthusiasts around the 

world the ability to build their own models using complex 

models like Hinton’s as a starting point. 

 
Figure 1. Transfer learning starts with a pre-trained model 

and fine-tunes the output layers to specialize towards a new 

task. 

1.2. TensorFlow.JS and App Inventor 

By using transfer learning as a starting point, the 

possibilities for novices to experiment and understand 

machine learning are endless. However, if we want to 

create effective machine learning engagement tools for 

students and machine learning novices, we have to think 

beyond the neural network. To remain engaged, students 

must interact with machine learning in a way that 

precipitates curiosity while demonstrating the power of 

deep learning models. 

Suppose Oli, a high school student, has recently been 

introduced to machine learning. Oli has only a surface-

level understanding of machine learning and computer 

science concepts, but has learned to identify instances of 

machine learning in his everyday life: things like FaceID 

on his iPhone, or interacting with Siri and Alexa. Recently, 

Oli has become especially fascinated by the power of 

personal assistants, and has noticed that Siri and Google 

Assistant can be trained to only respond to his own voice. 

Motivated by the ubiquity of privacy and technology in 

today’s media headlines, Oli wants to combine his interest 

in machine learning with an attempt to build his own 

privacy-conscious application. He comes up with the 

following goals: 

 

1. Learn how audio-classification works, and train 

his own custom audio-classifier that can detect 

features like speaker, emotion, language, etc. 
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2. Leverage this audio-classifier to create a private 

voice diary on his own phone that would only 

unlock at the sound of his voice. 

To help Oli achieve this goal, we can build him a flexible 

audio-classification tool that uses transfer learning to 

retrain a model to classify unique types of audio. With such 

a tool, Oli could easily train a model to identify different 

types of emotion, or even the sound of his own voice. 

However, Oli does not come from a computer science 

background and would likely be unable to use machine 

learning libraries like PyTorch [3] or TensorFlow [4]. 

Furthermore, Oli has little experience developing mobile 

applications and hopes to find a way to achieve his goals 

without needing to learn an entire mobile development 

stack.  

Thus we introduce two important technologies, 

Tensorflow.js [5] and MIT App Inventor [6], that this 

project utilizes to help students like Oli develop exposure 

to machine learning concepts without requiring a deep 

computer science background. Tensorflow.js is a Javascript 

machine learning library that has recently found success in 

the niche bridging machine learning implementation and 

educational tools. It allows for deep learning models to be 

trained and run right in the browser, and when combined 

with a well-designed web GUI, can hide the complexities 

of programming syntax while still allowing users to 

interface with machine learning models. Similarly, MIT 

App Inventor is a free open-source web platform that 

allows users to create mobile applications via a drag-and-

drop interface, requiring little to no programming 

experience while still offering rich application functionality. 

App Inventor also offers the ability to add custom 

extensions to any app, allowing us to build an audio 

classification extension that Oli could upload and use to 

help build his private diary app. With these two 

technologies, we’ve created a web app that blends PIC [7] 

and Teachable Machine [8], allowing users to train an 

audio classification model that can recognize 1-2 second 

audio clips. After using this web app to train a custom 

model, users will be able to download this model and plug 

it into MIT App Inventor as an extension to build apps with 

custom audio-classification functionality. 

2. RELATED WORK 
Spectrogram audio classification has been a topic of 

interest within audio classification for some time now. By 

converting audio clips to their visual frequency 

representation (a 1-to-1 mapping that retains all audio 

information), we can easily apply existing CNN methods to 

a classification problem that would normally require more 

complex RNN methods to see reliable results. Many of 

these methods are implemented in Tensorflow [9] or 

PyTorch [10]. Less work has been done to create a flexible 

spectrogram audio classification tool that can run in the 

browser. However, Google has released a pre-trained 

Tensorflow.js audio classifier that can run in the browser 

and recognizes the 9 digits and a few other words [11]. 

This model was trained on 100,000+ audio files, but does 

not provide much flexibility in terms of possible 

classifications as its homogenous training dataset precludes 

it from generalizing well beyond spectrograms of specific 

audio clips. Our contribution, the Personal Audio Classifer 

(PAC) is a novel approach that uses Mobilenet [12] 

(trained on 100,000+ non-spectrogram images) to provide a 

more robust base CNN model that has learned from the 

diversity present in general image datasets. We can then 

retrain MobileNet to focus on the more trivial task of 

classifying spectrograms, given spectrogram images are 

significantly less variant than the images present in 

MobileNet’s training dataset.  

 
Figure 2. The pretrained MobileNet model, with 28 layers,  

provides the base model for our in-browser spectrogram 

classifier. 

3. APPROACH 
3.1. Personal Audio Classifier 

We present a web application (Personal Audio Classifier, 

or PAC) that allows users to train a custom audio classifier 

using Tensorflow.js within the browser. The application is 

available to the public at c1.appinventor.mit.edu. This 

section will detail the basic functionality, as well as the 

machine learning tools that were used to implement an in-

browser audio classifier. First, users are prompted to add 

custom labels that the classifier will attempt to differentiate 

between. Users can then record an unlimited number of 

audio clips for each label that will be used to train the 

internal model. Each audio clip is one second long, and 

client side JavaScript is used to up-sample each audio clip 

to 384,000 Hz. Each element in the audio buffer is passed 

through a Fast Fourier Transform to draw the audio 

frequencies onto a single pixel sliver of our output 

spectrogram. This spectrogram provides a visual 

representation of the recorded audio bite, and is attached to 

the corresponding label so that the user can view each 

audio clip in the browser.  
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Figure 3. The label view allows users to add custom labels and record 

corresponding audio clips. Audio clips are up-sampled  

and converted to spectrograms in the browser. 

After inputting a number of labels and recording the 

corresponding audio clips, the user is prompted to train a 

custom model using their provided training data, specifying 

hyperparameters like Learning Rate, Optimizer, Epochs, 

and Training Data Fraction. The web application then 

proceeds to load a pretrained ImageNet model 

(MobileNet), and trains a custom machine learning model 

in the browser using the activations outputted from passing 

the training data through the pretrained model. After 

experimenting with a variety of model architectures, we 

decided to standardize the custom model to have a single 

convolutional layer, a single flatten layer, and two dense 

layers. The output of the model is then passed through a 

SoftMax layer to generate probabilities that correspond to 

the user-inputted labels.  

A separate page allows the user to use this custom trained 

model as a classifier, recording audio clips that are passed 

back through the model and assigned to one of their 

original labels. The corresponding label confidences are 

displayed after each clip is recorded, and we aggregate the 

test results so the user can analyze the success of their 

custom classifier, and even download the custom model for 

use in the App Inventor extension. 

 
Figure 4. The test view allows users to record and  

classify audio clips that are converted to spectrograms 

 and passed through the custom classifier. 

 

 
Figure 5: The test view also provides the aggregated results 

 from classifying user-recorded audio clips. 

3.2. App Inventor Extension 

Our final contribution is a custom App Inventor extension 

that allows for users to upload their PAC model and build 

applications in App Inventor using their custom audio 

classifier. The extension is built in Java and Javascript and 

fully integrates with App Inventor, providing users with an 

API to interact with and classify audio clips that are 

recorded within App Inventor applications. The following 

event functions are provided to the user: 

1. ClassifierReady: An event function indicating that 

the classifier is ready. 

2. GotClassification: Event indicating that 

classification has finished successfully. Result is 

of the form [[class1, confidence1], [class2, 

confidence2], ..., [class10, confidence10]]. 

3. ClassifySoundData: Performs classification on the 

image at the given path and triggers the 

GotClassification event when classification is 

finished successfully. 

4. Error: Event indicating that an error has occurred. 

4. EVALUATION 
To evaluate PAC, we utilize the web interface to train a 

number of custom classifiers. We test each classifier in the 

browser on a 2015 Macbook Pro, and provide five training 

clips for each label. The following test cases are evaluated. 

1. Number Classification: We train the classifier on 

3 different numbers: [One, Seven, Eleven], and 

evaluate the classifier with 15 test audio clips, five 

per class. We see a 100% test accuracy with each 

of the 15 audio clips classified to the correct class.  

2. Word Classification: We train the classifier on 3 

different words: [Open, Close, Alarm], and 

evaluate the classifier on 15 test audio clips, five 

per class. We see a 73% test accuracy, with 4 

audio clips misclassified. We note that the 

similarity between the sounds and syllable count 

notably affect the performance of the classifier, 

with Open and Alarm classifications commonly 

mixed. 

3. Voice Classification: We train the classifier on 2 

different voices, with each training example 
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provided by a single voice pronouncing the word 

Hello. We evaluate our classifier on 10 test audio 

clips, and see a 100% test accuracy. We see that 

the classifier excels at differentiating between 

voices, especially with one voice provided by a 

male, and the other provided by a female. This is 

likely due to the differences in frequencies that 

manifest more clearly in the spectrogram output.  

4. Emotion/Pitch Classification: We train the 

classifier on three different emotions, provided by 

the same subject pronouncing the word Hello in 

three unique pitches, representing the emotions 

angry, happy, and sad. We evaluate our classifier 

on 15 test audio clips and observe a test accuracy 

of 67%, with five audio clips misclassified. We 

note that this result shows that it is harder to 

distinguish pitch/emotion from spectrogram 

outputs due to the fact that changing pitch does 

not necessarily result in clear frequency alterations 

in the spectrogram output. 

We can draw a number of interesting conclusions from 

these test cases. Primarily, different training labels 

provided by a user that manifest in distinguishable 

frequency differences lead to the best model performance. 

This is to be expected as the trained classifier has to 

distinguish between very minute differences in one second 

audio spectrograms in order to correctly classify a test clip. 

We observe the best model performance on multi-syllable 

words and unique voices. The model tends to struggle with 

word and pitch differentiation when the provided test labels 

are too similar. In the future, we hope to evaluate the 

performance of App Inventor applications that use PAC to 

provide voice classification functionality on mobile 

devices. 

5. CONTRIBUTIONS 
In this section we summarize our methodology and aggregate the 

four most significant contributions from this project. 

1. We explore transfer learning in the context of in-

browser machine learning classification and provide a 

code framework for building an in-browser audio 

classifier. 

2. We provide a code framework for up-sampling audio 

clips and converting audio files to spectrogram images 

in real time in the browser. 

3. We introduce the Personal Audio Classifier (PAC), an 

in-browser audio classifier tool pre-trained on 

MobileNet that allows users to train and test custom 

audio spectrogram models. 

4. We provide an App Inventor extension that allows users 

to build App Inventor applications utilizing a custom 

model exported from PIC. 

6. REFERENCES 
Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). 

How transferable are features in deep neural networks? 

Retrieved Month day, year, from  

https://arxiv.org/abs/1411.1792  

Hinton, G. (2019). ImageNet classification with deep 

convolutional neural networks. Retrieved Month day, 

year, from https://dl.acm.org/citation.cfm?id=3065386  

PyTorch. (n.d). Homepage. Retrieved December 12, 2019 

from https://pytorch.org/  

Tensorflow (n.d.). Homepage. Retrieved December 12, 

2019 from https://tensorflow.org/  

Tensorflow.js (n.d.). Homepage. Retrieved December 12, 

2019 from https://tensorflow.org/js  

MIT App Inventor (n.d.). Homepage. Retrieved December 

12, 2019, from https://appinventor.mit.edu/  

Personal Image Classifier (n.d.). Homepage. Retrieved 

December 12, 2019 from 

https://classifier.appinventor.mit.edu/  

Teachable Machine (n.d.). Homepage. Retrieved December 

12, 2019 from https://teachablemachine.withgoogle.com/  

Tensorflow Audio Recognition (n.d.). tensorflow/docs. 

Retrieved December 12, 2019, from 

https://github.com/tensorflow/docs/blob/master/site/en/r1

/tutorials/sequences/audio_recognition.md  

Pytorch. (n.d.). Pytorch Audio Transforms. Retrieved 

December 12, 2019, from 

https://github.com/pytorch/audio/blob/master/torchaudio/

transforms.py  

Tensorflow. (2019). Speech Commands. Retrieved 

December 12, 2019, from 

https://github.com/tensorflow/tfjs-

models/tree/master/speech-commands  

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., 

Wang, W., Weyand, T., Andreetto, M., & Adam, 

Hartwig. (2017). MobileNets: Efficient Convolutional 

Neural Networks for Mobile Vision Applications. 

Retrieved December 12, 2019, from 

https://arxiv.org/abs/1704.04861  

 

 

https://arxiv.org/abs/1411.1792
https://dl.acm.org/citation.cfm?id=3065386
https://pytorch.org/
https://tensorflow.org/
https://tensorflow.org/js
https://appinventor.mit.edu/
https://classifier.appinventor.mit.edu/
https://teachablemachine.withgoogle.com/
https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/audio_recognition.md
https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/audio_recognition.md
https://github.com/pytorch/audio/blob/master/torchaudio/transforms.py
https://github.com/pytorch/audio/blob/master/torchaudio/transforms.py
https://github.com/tensorflow/tfjs-models/tree/master/speech-commands
https://github.com/tensorflow/tfjs-models/tree/master/speech-commands
https://arxiv.org/abs/1704.04861

	1. INTRODUCTION
	2. RELATED WORK
	3. APPROACH
	4. EVALUATION
	5. CONTRIBUTIONS
	6. REFERENCES

