
CTE2020

Using Transfer Learning, Spectrogram Audio Classification, and MIT App

Inventor to Facilitate Machine Learning Understanding

Nikhil Bhatia1, Natalie Lao1

1Massachusetts Institute of Technology, USA

nwbhatia@mit.edu, natalie@mit.edu

ABSTRACT
Recent advancements in deep learning have brought

machine learning and its many applications to the forefront

of our everyday lives. As technology has become more and

more integrated into our educational curriculum,

researchers have focused on creating deep learning tools

that allow students to interact with machine learning in a

way that incites curiosity and teaches important concepts.

Our research contribution focuses on applying transfer

learning and spectrogram audio classification methods to

teach basic machine learning concepts to students. We

introduce the Personal Audio Classifier (PAC), a web

interface that allows users to train and test custom audio

classification models that can classify 1-2 second sound

bites recorded by the user. We also contribute a custom

App Inventor extension that allows users to use the output

of the web interface to create App Inventor applications

that rely on their trained custom audio classification model.

1. INTRODUCTION
From personal voice assistants to self-driving cars, machine

learning applications have permeated every aspect of our

daily lives. Much of these advances are thanks to the

subfield of machine learning known as deep learning, a

field primarily concerned with building large neural

networks to perform specialized tasks. Yet as researchers

began to make significant advancements in deep learning

during the past decade, it became clear that computational

complexity, training time, and esoteric development tools

could pose as a deterrent to widespread development of

deep learning applications. Transfer learning was born out

of this deficiency, spurred by Yosinski’s 2014 work [1] on

transferable features in deep neural networks.

1.1. Transfer Learning

Transfer learning is a machine learning method where an

existing deep learning model is used as the starting point to

train a model specialized for a slightly different task. The

ability to start with a pre-trained model allows new

developers to apply deep learning to solve novel problems

without the vast compute and time resources normally

needed to train neural networks from scratch. To take an

example, we can look at one recent notable application

from the field of deep learning: the development of robust

deep convolutional neural networks used for image

classification and object recognition. In 2012, Hinton [2]

first showed that their deep neural network with over 60

million parameters and 650,000 neurons could be trained to

classify ImageNet images with startling accuracy. However,

developing this complex model required a uniquely

efficient GPU implementation of the convolution operation,

tens of thousands of dollars in state-of-the-art GPU

hardware, and months of training and testing. While this

development process is likely only accessible to

researchers or institutions with deep pockets, the result is

one that should be available to developers of all levels and

even students of any age. Transfer learning has allowed for

just this, giving machine learning enthusiasts around the

world the ability to build their own models using complex

models like Hinton’s as a starting point.

Figure 1. Transfer learning starts with a pre-trained model

and fine-tunes the output layers to specialize towards a new

task.

1.2. TensorFlow.JS and App Inventor

By using transfer learning as a starting point, the

possibilities for novices to experiment and understand

machine learning are endless. However, if we want to

create effective machine learning engagement tools for

students and machine learning novices, we have to think

beyond the neural network. To remain engaged, students

must interact with machine learning in a way that

precipitates curiosity while demonstrating the power of

deep learning models.

Suppose Oli, a high school student, has recently been

introduced to machine learning. Oli has only a surface-

level understanding of machine learning and computer

science concepts, but has learned to identify instances of

machine learning in his everyday life: things like FaceID

on his iPhone, or interacting with Siri and Alexa. Recently,

Oli has become especially fascinated by the power of

personal assistants, and has noticed that Siri and Google

Assistant can be trained to only respond to his own voice.

Motivated by the ubiquity of privacy and technology in

today’s media headlines, Oli wants to combine his interest

in machine learning with an attempt to build his own

privacy-conscious application. He comes up with the

following goals:

1. Learn how audio-classification works, and train

his own custom audio-classifier that can detect

features like speaker, emotion, language, etc.

CTE2020

2. Leverage this audio-classifier to create a private

voice diary on his own phone that would only

unlock at the sound of his voice.

To help Oli achieve this goal, we can build him a flexible

audio-classification tool that uses transfer learning to

retrain a model to classify unique types of audio. With such

a tool, Oli could easily train a model to identify different

types of emotion, or even the sound of his own voice.

However, Oli does not come from a computer science

background and would likely be unable to use machine

learning libraries like PyTorch [3] or TensorFlow [4].

Furthermore, Oli has little experience developing mobile

applications and hopes to find a way to achieve his goals

without needing to learn an entire mobile development

stack.

Thus we introduce two important technologies,

Tensorflow.js [5] and MIT App Inventor [6], that this

project utilizes to help students like Oli develop exposure

to machine learning concepts without requiring a deep

computer science background. Tensorflow.js is a Javascript

machine learning library that has recently found success in

the niche bridging machine learning implementation and

educational tools. It allows for deep learning models to be

trained and run right in the browser, and when combined

with a well-designed web GUI, can hide the complexities

of programming syntax while still allowing users to

interface with machine learning models. Similarly, MIT

App Inventor is a free open-source web platform that

allows users to create mobile applications via a drag-and-

drop interface, requiring little to no programming

experience while still offering rich application functionality.

App Inventor also offers the ability to add custom

extensions to any app, allowing us to build an audio

classification extension that Oli could upload and use to

help build his private diary app. With these two

technologies, we’ve created a web app that blends PIC [7]

and Teachable Machine [8], allowing users to train an

audio classification model that can recognize 1-2 second

audio clips. After using this web app to train a custom

model, users will be able to download this model and plug

it into MIT App Inventor as an extension to build apps with

custom audio-classification functionality.

2. RELATED WORK
Spectrogram audio classification has been a topic of

interest within audio classification for some time now. By

converting audio clips to their visual frequency

representation (a 1-to-1 mapping that retains all audio

information), we can easily apply existing CNN methods to

a classification problem that would normally require more

complex RNN methods to see reliable results. Many of

these methods are implemented in Tensorflow [9] or

PyTorch [10]. Less work has been done to create a flexible

spectrogram audio classification tool that can run in the

browser. However, Google has released a pre-trained

Tensorflow.js audio classifier that can run in the browser

and recognizes the 9 digits and a few other words [11].

This model was trained on 100,000+ audio files, but does

not provide much flexibility in terms of possible

classifications as its homogenous training dataset precludes

it from generalizing well beyond spectrograms of specific

audio clips. Our contribution, the Personal Audio Classifer

(PAC) is a novel approach that uses Mobilenet [12]

(trained on 100,000+ non-spectrogram images) to provide a

more robust base CNN model that has learned from the

diversity present in general image datasets. We can then

retrain MobileNet to focus on the more trivial task of

classifying spectrograms, given spectrogram images are

significantly less variant than the images present in

MobileNet’s training dataset.

Figure 2. The pretrained MobileNet model, with 28 layers,

provides the base model for our in-browser spectrogram

classifier.

3. APPROACH
3.1. Personal Audio Classifier

We present a web application (Personal Audio Classifier,

or PAC) that allows users to train a custom audio classifier

using Tensorflow.js within the browser. The application is

available to the public at c1.appinventor.mit.edu. This

section will detail the basic functionality, as well as the

machine learning tools that were used to implement an in-

browser audio classifier. First, users are prompted to add

custom labels that the classifier will attempt to differentiate

between. Users can then record an unlimited number of

audio clips for each label that will be used to train the

internal model. Each audio clip is one second long, and

client side JavaScript is used to up-sample each audio clip

to 384,000 Hz. Each element in the audio buffer is passed

through a Fast Fourier Transform to draw the audio

frequencies onto a single pixel sliver of our output

spectrogram. This spectrogram provides a visual

representation of the recorded audio bite, and is attached to

the corresponding label so that the user can view each

audio clip in the browser.

CTE2020

Figure 3. The label view allows users to add custom labels and record

corresponding audio clips. Audio clips are up-sampled

and converted to spectrograms in the browser.

After inputting a number of labels and recording the

corresponding audio clips, the user is prompted to train a

custom model using their provided training data, specifying

hyperparameters like Learning Rate, Optimizer, Epochs,

and Training Data Fraction. The web application then

proceeds to load a pretrained ImageNet model

(MobileNet), and trains a custom machine learning model

in the browser using the activations outputted from passing

the training data through the pretrained model. After

experimenting with a variety of model architectures, we

decided to standardize the custom model to have a single

convolutional layer, a single flatten layer, and two dense

layers. The output of the model is then passed through a

SoftMax layer to generate probabilities that correspond to

the user-inputted labels.

A separate page allows the user to use this custom trained

model as a classifier, recording audio clips that are passed

back through the model and assigned to one of their

original labels. The corresponding label confidences are

displayed after each clip is recorded, and we aggregate the

test results so the user can analyze the success of their

custom classifier, and even download the custom model for

use in the App Inventor extension.

Figure 4. The test view allows users to record and

classify audio clips that are converted to spectrograms

 and passed through the custom classifier.

Figure 5: The test view also provides the aggregated results

 from classifying user-recorded audio clips.

3.2. App Inventor Extension

Our final contribution is a custom App Inventor extension

that allows for users to upload their PAC model and build

applications in App Inventor using their custom audio

classifier. The extension is built in Java and Javascript and

fully integrates with App Inventor, providing users with an

API to interact with and classify audio clips that are

recorded within App Inventor applications. The following

event functions are provided to the user:

1. ClassifierReady: An event function indicating that

the classifier is ready.

2. GotClassification: Event indicating that

classification has finished successfully. Result is

of the form [[class1, confidence1], [class2,

confidence2], ..., [class10, confidence10]].

3. ClassifySoundData: Performs classification on the

image at the given path and triggers the

GotClassification event when classification is

finished successfully.

4. Error: Event indicating that an error has occurred.

4. EVALUATION
To evaluate PAC, we utilize the web interface to train a

number of custom classifiers. We test each classifier in the

browser on a 2015 Macbook Pro, and provide five training

clips for each label. The following test cases are evaluated.

1. Number Classification: We train the classifier on

3 different numbers: [One, Seven, Eleven], and

evaluate the classifier with 15 test audio clips, five

per class. We see a 100% test accuracy with each

of the 15 audio clips classified to the correct class.

2. Word Classification: We train the classifier on 3

different words: [Open, Close, Alarm], and

evaluate the classifier on 15 test audio clips, five

per class. We see a 73% test accuracy, with 4

audio clips misclassified. We note that the

similarity between the sounds and syllable count

notably affect the performance of the classifier,

with Open and Alarm classifications commonly

mixed.

3. Voice Classification: We train the classifier on 2

different voices, with each training example

CTE2020

provided by a single voice pronouncing the word

Hello. We evaluate our classifier on 10 test audio

clips, and see a 100% test accuracy. We see that

the classifier excels at differentiating between

voices, especially with one voice provided by a

male, and the other provided by a female. This is

likely due to the differences in frequencies that

manifest more clearly in the spectrogram output.

4. Emotion/Pitch Classification: We train the

classifier on three different emotions, provided by

the same subject pronouncing the word Hello in

three unique pitches, representing the emotions

angry, happy, and sad. We evaluate our classifier

on 15 test audio clips and observe a test accuracy

of 67%, with five audio clips misclassified. We

note that this result shows that it is harder to

distinguish pitch/emotion from spectrogram

outputs due to the fact that changing pitch does

not necessarily result in clear frequency alterations

in the spectrogram output.

We can draw a number of interesting conclusions from

these test cases. Primarily, different training labels

provided by a user that manifest in distinguishable

frequency differences lead to the best model performance.

This is to be expected as the trained classifier has to

distinguish between very minute differences in one second

audio spectrograms in order to correctly classify a test clip.

We observe the best model performance on multi-syllable

words and unique voices. The model tends to struggle with

word and pitch differentiation when the provided test labels

are too similar. In the future, we hope to evaluate the

performance of App Inventor applications that use PAC to

provide voice classification functionality on mobile

devices.

5. CONTRIBUTIONS
In this section we summarize our methodology and aggregate the

four most significant contributions from this project.

1. We explore transfer learning in the context of in-

browser machine learning classification and provide a

code framework for building an in-browser audio

classifier.

2. We provide a code framework for up-sampling audio

clips and converting audio files to spectrogram images

in real time in the browser.

3. We introduce the Personal Audio Classifier (PAC), an

in-browser audio classifier tool pre-trained on

MobileNet that allows users to train and test custom

audio spectrogram models.

4. We provide an App Inventor extension that allows users

to build App Inventor applications utilizing a custom

model exported from PIC.

6. REFERENCES
Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014).

How transferable are features in deep neural networks?

Retrieved Month day, year, from

https://arxiv.org/abs/1411.1792

Hinton, G. (2019). ImageNet classification with deep

convolutional neural networks. Retrieved Month day,

year, from https://dl.acm.org/citation.cfm?id=3065386

PyTorch. (n.d). Homepage. Retrieved December 12, 2019

from https://pytorch.org/

Tensorflow (n.d.). Homepage. Retrieved December 12,

2019 from https://tensorflow.org/

Tensorflow.js (n.d.). Homepage. Retrieved December 12,

2019 from https://tensorflow.org/js

MIT App Inventor (n.d.). Homepage. Retrieved December

12, 2019, from https://appinventor.mit.edu/

Personal Image Classifier (n.d.). Homepage. Retrieved

December 12, 2019 from

https://classifier.appinventor.mit.edu/

Teachable Machine (n.d.). Homepage. Retrieved December

12, 2019 from https://teachablemachine.withgoogle.com/

Tensorflow Audio Recognition (n.d.). tensorflow/docs.

Retrieved December 12, 2019, from

https://github.com/tensorflow/docs/blob/master/site/en/r1

/tutorials/sequences/audio_recognition.md

Pytorch. (n.d.). Pytorch Audio Transforms. Retrieved

December 12, 2019, from

https://github.com/pytorch/audio/blob/master/torchaudio/

transforms.py

Tensorflow. (2019). Speech Commands. Retrieved

December 12, 2019, from

https://github.com/tensorflow/tfjs-

models/tree/master/speech-commands

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,

Wang, W., Weyand, T., Andreetto, M., & Adam,

Hartwig. (2017). MobileNets: Efficient Convolutional

Neural Networks for Mobile Vision Applications.

Retrieved December 12, 2019, from

https://arxiv.org/abs/1704.04861

https://arxiv.org/abs/1411.1792
https://dl.acm.org/citation.cfm?id=3065386
https://pytorch.org/
https://tensorflow.org/
https://tensorflow.org/js
https://appinventor.mit.edu/
https://classifier.appinventor.mit.edu/
https://teachablemachine.withgoogle.com/
https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/audio_recognition.md
https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/audio_recognition.md
https://github.com/pytorch/audio/blob/master/torchaudio/transforms.py
https://github.com/pytorch/audio/blob/master/torchaudio/transforms.py
https://github.com/tensorflow/tfjs-models/tree/master/speech-commands
https://github.com/tensorflow/tfjs-models/tree/master/speech-commands
https://arxiv.org/abs/1704.04861

	1. INTRODUCTION
	2. RELATED WORK
	3. APPROACH
	4. EVALUATION
	5. CONTRIBUTIONS
	6. REFERENCES

