
AI augmented feature to Edit and Design
Mobile Applications

Ashley Granquist, David Y.J. Kim, and Evan Patton

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract. We are developing an AI assistance platform that enables
children to create mobile applications. The platform is based on the
MIT App Inventor and allows kids to easily edit the interface and func-
tionality of the components of their app. By using textual commands,
kids can make changes to their mobile application without needing to
have a technical background in programming. The goal of the platform
is to empower children with the ability to create their own mobile ap-
plications and foster their creativity and problem-solving skills in a fun
and interactive way.

Keywords: Human-Computer Interaction · Mobile Application · MIT
App Inventor

1 Introduction

The recent development of AI has been nothing short of revolutionary, drasti-
cally changing the way we live and interact with technology [9]. While this has
caused a degree of apprehension [6], it has also presented us with an incredi-
ble opportunity: the chance to collaborate with AI and leverage its strengths to
unlock solutions to complex problems and achieve our goals in ways that were
previously unimaginable [15,16]. Through this collaboration, AI and humans can
work together to augment each other’s capabilities and create far more efficient
and effective outcomes.

AI-human collaboration refers to the use of AI technology in combination
with human expertise to achieve a common goal [11,13,3]. In the context of pro-
gramming and software development, AI-human collaboration can take many
forms, such as text-to-code models that generate code based on human input,
or low-code platforms that allow non-technical users to build applications with
the help of AI-powered drag-and-drop interfaces [10,1,2]. There are several ben-
efits to AI-human collaboration in programming and software development. For
example, AI-powered code completion tools can assist programmers in writing
code more efficiently and accurately by suggesting code snippets, reducing syntax
errors, and completing code automatically.

In this paper, we show a development of a new feature for the MIT App
Inventor platform [17]. This feature will allow users to edit and customize their
mobile applications by providing a simple textual description. With this feature,



2 A. Granquist

users will no longer have to rely solely on programming elements to make changes
to their apps. Instead, they can easily edit and modify their apps using plain
language, making the app creation process more accessible and user-friendly.
This is a major step forward in our goal to democratize mobile app development
and empower users to create their own apps with ease [14].

2 Related work

Text-to-code models are AI-powered models that can generate code from natu-
ral language inputs, such as written descriptions or verbal commands [4]. They
use machine learning algorithms to understand the meaning of the input and
generate code that implements the desired functionality. A major example is
Copilot [4], an AI-powered code completion tool that helps programmers write
code more efficiently and accurately. Text-to-code models can be used in var-
ious applications, such as code generation for web and mobile apps, software
prototyping, and data analysis. They can also be used to automate repetitive
tasks in software development, such as generating boilerplate code for common
use cases [5]. One of the benefits of text-to-code models is that they can lower
the barrier to entry for people who are interested in learning how to code, but
have limited programming experience. By allowing users to describe what they
want to achieve in natural language, text-to-code models can help them quickly
generate working code without having to learn the intricacies of a particular
programming language. Recently, the MIT App Inventor team has been devel-
oping a new platform called Aptly [8]. Aptly lets anyone – even young students
– create original apps for tablets and smartphones by speaking in natural lan-
guage. For example, a user might type in or speak: “Create an app with a few
buttons corresponding to various languages. When I press a button, translate
what I say into the language for that button and speak the result.” Using the
verbal prompt, the platform creates a fully functional app on the user’s mobile
device.

3 Method

The editing feature uses the technology of large language models to automatically
generate mobile apps. The performance depends on the input given to OpenAI’s
Codex, referred to as “prompt”. We automatically craft a prompt by providing
a set of examples (the original code, the textual description of the desired edit,
and its modified code) along with the current app code and the user’s requested
textual edit. Such prompt engineering is referred to as few-shot prompts[12].

When a user requests edits for their app, the process is as follows: The user
provides a natural language description of their desired edit, such as “Add an-
other label that says ‘Welcome to my app!”’ or “When the button is clicked,
set the background color to blue.” The Aptly server then sends the request to
Codex to generate updated Aptly code representing the new app, much like how



Textual editing for app creation 3

Codex

Screen1 = Screen(AppName = 'Riley', Title = 'Screen1')
Image1 = Image(Screen1, Clickable = True, Picture = 'Riley.jpg')
Label1 = Label(Screen1, Text = “Text for Label 1')

Change the text 
to “pet my dog 
Riley”

Screen1 = Screen(AppName = 'Riley', Title = 'Screen1')
Image1 = Image(Screen1, Clickable = True, Picture = 'Riley.jpg',)
Label1 = Label(Screen1, Text = 'pet my dog Riley')

Original Code

Modified Code

Screen 1

Image 1 Label 1

Click Pic text

Screen 1

Image 1 Label 1

Click Pic text

Original AST Modified AST

• Compute the minimum tree edit 
distance between the Original AST and 
the Modified AST using Zhang-Shasha
(ZSS) algorithm

• Process the transition from the original 
app to the modified app

Fig. 1. Our editing process begins when a user requests a change, such as “Change
the text to ‘pet my dog Riley’.” We feed the original code and the user’s request into
Codex, which outputs the modified code. We then use the ZSS algorithm to compare
the original code’s AST with the modified code’s AST and identify the series of changes
needed to make the edit. Once we’ve processed the edits, we arrive at the target app.

Codex is used to generate Aptly code when users create projects from natural
language descriptions.

Given the updated Aptly code, the Aptly server then computes a sequence
of edits needed to transform the original app into the updated one. Specifically,
we compute the minimum tree edit distance between the abstract syntax tree
representing the current app and the AST representing the modified app using
the Zhang-Shasha (ZSS) algorithm [18]. “Edits” can mean inserting, updating,
or deleting components or blocks (or simply keeping them the same) between
the original and modified program.

Having computed the most efficient way to transform the original program
into the modified program through a sequence of insertions, updates, and dele-
tions, we begin processing those edit events over several stages. We begin by
checking whether all of our proposed insertions of components or blocks should
actually be insertions. ZSS may have suggested deleting a component, creat-
ing a new version of that same component, and then inserting the new version
elsewhere. In these cases, we could simply move the original component (i.e.
update its parent) for increased efficiency. Next, we process deletions, check-
ing each proposed deletion against our proposed insertions to ensure we move



4 A. Granquist

components rather than deleting and re-inserting them where possible. We then
process updates such as moving components around or changing their properties,
and finally, we process insertions of new components and blocks. Having finalized
the sequence of edit events, the Aptly server sends those events to App Inven-
tor through the Real-Time Collaboration (RTC) [7] server, and App Inventor
processes those RTC operations to modify the app.

4 Result

Change the text to 
“pet my dog Riley”

Change the text 
font to 20

Fig. 2. Examples of editing the user interface of the mobile application. In the first
command, the user asks to change the label text to “pet my dog Riley”, and in the
second command, the user asks to change the font of the text to be 20 (from 14).

Any mobile application can be broken down into the user interface of the
application and the functionality of each component within the application. Our
editing feature allows for the editing of both the user interface and functionality
of mobile applications.

Figure 2 shows some simple examples of editing the user interface of the ap-
plication. As an example, a user can simply ask to change a label text to “Pet
My Dog Riley” with a single command. They can also adjust the font of the text
with another simple command. These quick and straightforward updates demon-
strate the ease with which users can manipulate their app’s visual appearance
to match their preferences.

Figure 3 shows some simple examples of editing the functionality of the com-
ponents within an application. For example, a user might change the behavior
of an image of a dog. Initially, clicking the image produces no effect. But with a
simple command, the user can now add a barking sound that triggers upon click-
ing the image. The corresponding code and blocks are automatically generated
to implement the desired behavior change.



Textual editing for app creation 5

Screen1 = Screen(AppName = 'Riley', Title = 'Screen1')
Image1 = Image(Screen1, Clickable = True, Height = -2, Width = -2, Picture = 'Riley.jpg', 
ScalePictureToFit = True)
Label1 = Label(Screen1, FontSize = 20, Text = 'pet my dog Riley', TextAlignment = 1)
Sound1 = Sound(Screen1, Source = 'bark.mp3')

Screen1 = Screen(AppName = 'Riley', Title = 'Screen1')
Image1 = Image(Screen1, Clickable = True, Height = -2, Width = -2, Picture = 'Riley.jpg', 
ScalePictureToFit = True)
Label1 = Label(Screen1, FontSize = 20, Text = 'pet my dog Riley', TextAlignment = 1)
Sound1 = Sound(Screen1, Source = 'bark.mp3')

when Image1.Click():
call Sound1.Play()

When the button is 
clicked play Sound1

Fig. 3. An example where the user changes the functionality of when the image is
clicked. Before the edit, nothing happens when the user clicks the image of a dog. The
user commands to add a barking sound when the image is clicked. On the right side,
you can see the function is added in code level and blocks being created
.

5 Conclusion & Discussion

In this paper, we present our work on developing a cutting-edge platform that
combines the simplicity of block coding with the power of AI. Our aim is to
provide students with a user-friendly environment where they can easily edit
and modify their block code with the aid of an AI-powered feature. This feature
will streamline the coding process and provide students with suggestions and
recommendations as they code, making the development process faster and more
efficient. By leveraging the power of AI, we believe that we can empower students
to take their coding skills to the next level and create more sophisticated and
innovative applications. This work represents an important step forward in the
field of educational technology and we are excited to see the impact it will
have on students and the future of app development. Going forward, we aim
to expand the editing capability to enable users to edit more diverse aspects of
their mobile applications. In addition, we plan to conduct extensive case studies
to demonstrate the impact of AI-student collaboration in the creation of mobile
apps and how this collaboration can empower students to achieve great results.
Our goal is to unlock the full potential of this collaboration, providing a platform
for students to build their skills and create innovative, cutting-edge apps.

References

1. Bales, S.: Build android apps without coding: Get started with android apps using
thunkable-mit app inventor (2018)



6 A. Granquist

2. Bock, A.C., Frank, U.: Low-code platform. Business & Information Systems Engi-
neering 63, 733–740 (2021)

3. Bolton, C., Machová, V., Kovacova, M., Valaskova, K.: The power of human–
machine collaboration: Artificial intelligence, business automation, and the smart
economy. Economics, Management, and Financial Markets 13(4), 51–56 (2018)

4. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards,
H., Burda, Y., Joseph, N., Brockman, G., et al.: Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 (2021)

5. Dakhel, A.M., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M.C., Ming,
Z., et al.: Github copilot ai pair programmer: Asset or liability? arXiv preprint
arXiv:2206.15331 (2022)

6. Dietterich, T.G., Horvitz, E.J.: Rise of concerns about ai: reflections and directions.
Communications of the ACM 58(10), 38–40 (2015)

7. Hsu, T.C., Abelson, H., Patton, E., Chen, S.C., Chang, H.N.: Self-efficacy and
behavior patterns of learners using a real-time collaboration system developed for
group programming. International Journal of Computer-Supported Collaborative
Learning pp. 1–24 (2021)

8. Kim, D.Y., Granquist, A., Patton, E., Friedman, M., Abelson, H.: Speak your
mind: Introducing aptly, the software platform that turns ideas into working apps.
In: ICERI2022 Proceedings. pp. 1653–1660. IATED (2022)

9. Makridakis, S.: The forthcoming artificial intelligence (ai) revolution: Its impact
on society and firms. Futures 90, 46–60 (2017)

10. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.: The scratch pro-
gramming language and environment. ACM Transactions on Computing Education
(TOCE) 10(4), 1–15 (2010)

11. Park, S.Y., Kuo, P.Y., Barbarin, A., Kaziunas, E., Chow, A., Singh, K., Wilcox, L.,
Lasecki, W.S.: Identifying challenges and opportunities in human-ai collaboration
in healthcare. In: Conference Companion Publication of the 2019 on Computer
Supported Cooperative Work and Social Computing. pp. 506–510 (2019)

12. Shone, J.L., Liu, R., Patton, E., Kim, D.Y.J.: Design and optimization of an au-
tomatic mobile application generating learning platform. EasyChair Preprint no.
9136 (EasyChair, 2022)

13. Sowa, K., Przegalinska, A., Ciechanowski, L.: Cobots in knowledge work: Human–ai
collaboration in managerial professions. Journal of Business Research 125, 135–142
(2021)

14. Tissenbaum, M., Sheldon, J., Abelson, H.: From computational thinking to com-
putational action. Communications of the ACM 62(3), 34–36 (2019)

15. Wang, D., Churchill, E., Maes, P., Fan, X., Shneiderman, B., Shi, Y., Wang, Q.:
From human-human collaboration to human-ai collaboration: Designing ai sys-
tems that can work together with people. In: Extended abstracts of the 2020 CHI
conference on human factors in computing systems. pp. 1–6 (2020)

16. Wang, D., Weisz, J.D., Muller, M., Ram, P., Geyer, W., Dugan, C., Tausczik,
Y., Samulowitz, H., Gray, A.: Human-ai collaboration in data science: Exploring
data scientists’ perceptions of automated ai. Proceedings of the ACM on human-
computer interaction 3(CSCW), 1–24 (2019)

17. Wolber, D., Abelson, H., Spertus, E., Looney, L.: App inventor. ” O’Reilly Media,
Inc.” (2011)

18. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM journal on computing 18(6), 1245–1262 (1989)


	 AI augmented feature to Edit and Design Mobile Applications 

